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Towards Grounding Conceptual Spaces in
Neural Representations

Lucas Bechberger? and Kai-Uwe Kühnberger

Institute of Cognitive Science, Osnabrück University, Osnabrück, Germany
lucas.bechberger@uni-osnabrueck.de, kai-uwe.kuehnberger@uni-osnabrueck.de

Abstract. The highly influential framework of conceptual spaces pro-
vides a geometric way of representing knowledge. It aims at bridging the
gap between symbolic and subsymbolic processing. Instances are repre-
sented by points in a high-dimensional space and concepts are repre-
sented by convex regions in this space. In this paper, we present our
approach towards grounding the dimensions of a conceptual space in
latent spaces learned by an InfoGAN from unlabeled data.

1 Introduction

The cognitive framework of conceptual spaces [14, 15] attempts to bridge the
gap between symbolic and subsymbolic AI by proposing an intermediate con-
ceptual layer based on geometric representations. A conceptual space is a high-
dimensional space spanned by a number of quality dimensions representing inter-
pretable features. Convex regions in this space correspond to concepts. Abstract
symbols can be grounded by linking them to concepts in a conceptual space
whose dimensions are based on subsymbolic representations.

The framework of conceptual spaces has been highly influential in the last
15 years within cognitive science and cognitive linguistics [11, 13, 20]. It has also
sparked considerable research in various subfields of artificial intelligence, rang-
ing from robotics and computer vision [5–7] over the semantic web and ontology
integration [1, 10] to plausible reasoning [9, 19].

Although this framework provides means for representing concepts, it does
not consider the question of how these concepts can be learned from mostly
unlabeled data. Moreover, the framework assumes that the dimensions spanning
the conceptual space are already given a priori. In practical applications of the
framework, they thus often need to be handcrafted by a human expert.

In this paper, we argue that by using neural networks, one can automatically
extract the dimensions of a conceptual space from unlabeled data. We propose
that latent spaces learned by an InfoGAN [8] (a special class of Generative
Adversarial Networks [17]) can serve as domains in the conceptual spaces frame-
work. We further propose to use a clustering algorithm in these latent spaces in
order to discover meaningful concepts.

? Corresponding author, ORCID: 0000-0002-1962-1777



2

The remainder of this paper is structured as follows: Section 2 presents the
framework of conceptual spaces and Section 3 introduces the InfoGAN frame-
work. In Section 4, we present our idea of combining these two frameworks.
Section 5 gives an illustrative example and Section 6 concludes the paper.

2 Conceptual Spaces

A conceptual space [14] is a high-dimensional space spanned by so-called “qual-
ity dimensions”. Each of these dimensions represents an interpretable way in
which two stimuli can be judged to be similar or different. Examples for quality
dimensions include temperature, weight, time, pitch, and hue. A domain is a set
of dimensions that inherently belong together. Different perceptual modalities
(like color, shape, or taste) are represented by different domains. The color do-
main for instance can be represented by the three dimensions hue, saturation,
and brightness.1 Distance within a domain is measured by the Euclidean metric.

The overall conceptual space is defined as the product space of all dimensions.
Distance within the overall conceptual space is measured by the Manhattan
metric of the intra-domain distances. The similarity of two points in a conceptual
space is inversely related to their distance – the closer two instances are in the
conceptual space, the more similar they are considered to be.

The framework distinguishes properties like “red”, “round”, and “sweet”
from full-fleshed concepts like “apple” or “dog”: Properties are represented as
regions within individual domains (e.g., color, shape, taste), whereas full-fleshed
concepts span multiple domains. Reasoning within a conceptual space can be
done based on geometric relationships (e.g., betweenness and similarity) and
geometric operations (e.g., intersection or projection).

Recently, Balkenius & Gärdenfors [2] have argued that population coding in
the human brain can give rise to conceptual spaces. They discuss the connection
between neural and conceptual representations from a neuroscience/psychology
perspective, whereas we take a machine learning approach in this paper.

3 Representation Learning with InfoGAN

Within the research area of neural networks, there has been some substantial
work on learning compressed representations of a given feature space. Bengio et
al. [3] provide a thorough overview of different approaches in the representation
learning area. They define representation learning as “learning representations
of the data that make it easier to extract useful information when building clas-
sifiers or other predictors”. We will focus our discussion here on one specific
approach that is particularly fitting to our proposal, namely InfoGAN [8]. Info-
GAN is an extension of the GAN (Generative Adversarial Networks) framework
[17] which has been applied to a variety of problems (e.g., [12, 18, 21–23]). We
first describe the original GAN framework before moving on to InfoGAN.

1 Of course, one can also use other color spaces, e.g., the CIE L*a*b* space.
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Fig. 1. Left: Illustration of a GAN. Right: Illustration of an InfoGAN.

The GAN framework (depicted in the left part of Figure 1) consists of two
networks, the generator and the discriminator. The generator is fed with a low-
dimensional vector of noise values. Its task is to create high-dimensional data
vectors that have a similar distribution as real data vectors taken from an un-
labeled training set. The discriminator receives a data vector that was either
created by the generator or taken from the training set. Its task is to distinguish
real inputs from generated inputs. Although the discriminator is trained on a
classification task, the overall system works in an unsupervised way. The overall
architecture can be interpreted as a two-player game: The generator tries to fool
the discriminator by creating realistic inputs and the discriminator tries to avoid
being fooled by the generator. When the GAN framework converges, the discrim-
inator is expected to make predictions only at chance level and the generator is
expected to create realistic data vectors. Although the overall framework works
quite well, the dimensions of the input noise vector are usually not interpretable.

Chen et al. [8] have extended the original framework by introducing latent
variables: In the InfoGAN framework (shown in the right part of Figure 1),
the generator receives an additional input vector. The entries of this vector are
values of latent random variables, selected based on some probability distribution
that was defined a priori (e.g., uniform or Gaussian). The discriminator has the
additional task to reconstruct these latent variables.2 Chen et al. argue that
this ensures that the mutual information between the latent variable vector and
the generated data vector is high. They showed that after training an InfoGAN,
the latent variables tend to have an interpretable meaning. For instance, in
an experiment on the MNIST data set, the latent variables corresponded to
type of digit, digit rotation and stroke thickness. InfoGANs can thus provide a
bidirectional mapping between observable data vectors and interpretable latent
dimensions: One can both extract interpretable dimensions from a given data
vector and create a data vector from an interpretable latent representation.

2 This introduces a structure similar to an autoencoder (with the latent variables as
input/output and the generated data vector as hidden representation).
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4 Using Representation Learning to Ground Domains

For some domains of a conceptual space, a dimensional representation is al-
ready available. For instance, the color domain can be represented by the three-
dimensional HSB space. For other domains, it is however quite unclear how to
represent them based on a handful of dimensions. One prominent example is
the shape domain: To the best of our knowledge, there are no widely accepted
dimensional models for describing shapes.

We propose to use the InfoGAN framework in order to learn such a dimen-
sional representation based on an unlabeled data set: Each of the latent vari-
ables can be interpreted as one dimension of the given domain of interest. For
instance, the latent variables learned on a data set of shapes can be interpreted
as dimensions of the shape domain. Three important properties of domains in
a conceptual space are the following: interpretable dimensions, a distance-based
notion of similarity, and a geometric way of describing semantic betweenness. We
think that the latent space of an InfoGAN is a good candidate for representing
a domain of a conceptual space, because it fulfills all of the above requirements:

As described before, Chen et al. [8] found that the individual latent vari-
ables tend to have an interpretable meaning. Although this is only an empirical
observation, we expect it generalize to other data sets and thus to other domains.

Moreover, the smoothness assumption used in representation learning (cf. [3]
and [16, Ch. 15]) states that points with small distance in the input space should
also have a small distance in the latent space. This means that a distance-based
notion of similarity in the latent space is meaningful.

Finally, Radford et al. [18] found that linear interpolations between points
in the latent space of a GAN correspond to a meaningful “morph” between gen-
erated images in the input space. This indicates that geometric betweenness in
the latent space can represent semantic betweenness.

There are two important hyperparameters to the approach of grounding do-
mains in InfoGANs: The number of latent variables (i.e., the dimensionality of
the learned domain) and the type of distribution used for the latent variables
(e.g., uniform vs. Gaussian). Note that one would probably aim for the lowest-
dimensional representation that still describes the domain sufficiently well.

Finally, we would like to address a critical aspect of this proposal: How can
one make sure that the representation learned by the neural network only repre-
sents information from the target domain (e.g., shape) and not anything related
to other domains (e.g., color)? In our opinion, there are two complementary
methods to “steer” the network towards the desired representation:

The first option consists of selecting only such inputs for the training set that
do not exhibit major differences with respect to other domains. For instance, a
training set for the shape domain should only include images of shapes that have
the same color (e.g., black shape on white ground). If there is only very small
variance in the data set with respect to other domains (e.g., color), the network
is quite unlikely to incorporate this information into its latent representation.
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Fig. 2. Illustration of the envisioned overall system. Perceptions from the subsymbolic
layer are transformed to points in different domains by feature extractors that are
either handcrafted (e.g., HSB for colors) or trained neural networks (e.g., for the shape
domain). Each concept is described by one region per domain.

The second option concerns modifications of the network’s loss function: One
could for instance introduce an additional term into the loss function which mea-
sures the correlation between the learned latent representation and dimensions
from other (already defined) domains. This would cause a stronger error signal if
the network starts to re-discover already known dimensions from other domains
and therefore drive the network away from learning redundant representations.

A simple proof of concept implementation for the shape domain could be
based on a data set of simple 2D shapes (circles, triangles, rectangles, etc.) in
various orientations and locations. For a more thorough experiment, one could
for instance use ShapeNet3 [4], a data base of over 50,000 3D models for more
than 50 categories of objects. One could render these 3D models from various
perspectives in order to get 2D inputs (for learning to represent 2D shapes) or
work on a voxelized 3D input (for learning representations of 3D shapes).

5 An Illustrative Example

Figure 2 illustrates a simplified example of our envisioned overall system. Here,
we consider only two domains: color and shape. Color can be represented by the
HSB space using the three dimensions hue, saturation and brightness. This is
an example for a hard-coded domain. The representation of the shape domain,
however, needs to be learned. The artificial neural network depicted in Figure

3 https://www.shapenet.org/
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2 corresponds to the discriminator of an InfoGAN trained on a data set of shapes.

Let us consider two example concepts: The concept of an apple can be de-
scribed by the “red” region in the color domain and the “round” region in the
shape domain. The concept of a banana can be represented by the “yellow”
region in the color domain and the “cylindric” region in the shape domain.

If the system makes a new observation (e.g., an apple as depticted in Figure
2), it will convert this observation into a point in the conceptual space. For the
color domain, this is done by a hard-coded conversion to the HSB color space.
For the shape domain, the observation is fed into the discriminator and its latent
representation is extracted, resulting in the coordinates for the shape domain.
Now in order to classify this observation, the system needs to check whether
the resulting data point is contained in any of the defined regions. If the data
point is an element of the apple region in both domains (which is the case in our
example), this observation should be classified as an apple. If the data point is
an element of the banana region, the object should be classified as a banana.

Based on a new observation, the existing concepts can also be updated: If
the observation was classified as an apple, but it is not close to the center of the
apple region in one of the domains, this region might be enlarged or moved a bit,
such that the observed instance is better matched by the concept description.
If the observation does not match any of the given concepts at all, even a new
concept might be created. This means that concepts cannot only be applied
for classification, but they can also be learned and updated. Note that this can
take place without explicit label information, i.e., in an unsupervised way. Our
overall reserach goal is to develop a clustering algorithm that can take care of
incrementally updating the regions in such a conceptual space.

Please note that the updates considered above only concern the connections
between the conceptual and the symbolic layer. The connections between the
subsymbolic and the conceptual layer remain fixed. The neural network thus
only serves as a preprocessing step in our approach: It is trained before the
overall system is used and remains unchanged afterwards. Simultaneous updates
of both the neural network and the concept description might be desirable, but
would probably introduce a great amount of additional complexity.

6 Conclusion and Future Work

In this paper, we outlined how neural representations can be used to ground
the domains of a conceptual space in perception. This is especially useful for
domains like shape, where handcrafting a dimensional representation is difficult.
We argued that the latent representations learned by an InfoGAN have suitable
properties for being combined with the conceptual spaces framework. In future
work, we will implement the proposed idea by giving a neural grounding to the
domain of simple 2D shapes. Furthermore, we will devise a clustering algorithm
for discovering and updating conceptual representations in a conceptual space.
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Propositional Rule Extraction from Neural
Networks under Background Knowledge

Maryam Labaf1,2, Pascal Hitzler1, and Anthony B. Evans2
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2 Dept. of Math. and Stat., Wright State University, Dayton, OH, USA

Abstract. It is well-known that the input-output behaviour of a neural
network can be recast in terms of a set of propositional rules, and under
certain weak preconditions this is also always possible with positive (or
definite) rules. Furthermore, in this case there is in fact a unique minimal
(technically, reduced) set of such rules which perfectly captures the input-
output mapping.
In this paper, we investigate to what extent these results and correspond-
ing rule extraction algorithms can be lifted to take additional background
knowledge into account. It turns out that uniqueness of the solution can
then no longer be guaranteed. However, the background knowledge often
makes it possible to extract simpler, and thus more easily understand-
able, rulesets which still perfectly capture the input-output mapping.

1 Introduction

The study of rule extraction from trained artificial neural networks [2,8,15] ad-
dresses the desire to make the learned knowledge accessible to human interpre-
tation and formal assessment. Essentially, in the propositional case, activations
of input and output nodes are discretized by introducing an arbitrary thresh-
old. Each node is interpreted as a propositional variable, and activations above
the threshold are interpreted as this variable being “true”, while activations be-
low the threshold are interpreted as this variable being “false”. If I denotes the
power set (i.e., set of all subsets) of the (finite) set B of all propositional variables
corresponding to the nodes, then the input-output function of the network can
be understood as a function f : I → I: For I ∈ I, we interpret each p ∈ I as
being “true” and all p 6∈ I as being “false”. The set f(I) then contains exactly
those propositional variables which are “true” (or activated) in the output layer.

In propositional rule extraction, one now seeks sets Pf of propositional rules
(i.e., propositional Horn clauses) which capture or approximate the input-output
mapping f . In order to obtain such sets, there exist two main lines of approaches.
The first is introspective and seeks to construct rules out of the weights associated
with the connections between nodes in the network, usually proceeding in a layer-
by-layer fashion [8]. The second is to regard the network as a black box and to
consider only the input-output function f . This was, e.g., done in [15] where
it was shown, amongst other things, that a positive (or definite) ruleset can
always be extracted if the mapping f is monotonic, and that there is indeed
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a unique reduced such ruleset; we will provide sufficient technical details about
these preliminary results in the next section.

However, rulesets extracted with either method are prone to be large and
complex, i.e., from inspection of these rulesets it is often difficult to obtain real
insights into what the network has learned. In this paper, we thus investigate rule
extraction under the assumption that there is additional background knowledge
which can be connected to network node activations, with the expectation that
such background knowledge will make it possible to formulate simpler rulesets
which still explain the input-output functions of the networks, if the background
knowledge is also taken into account.

The motivation for this line of work is the fact that in recent years there has
been a very significant increase in the availability of structured data on the World
Wide Web, i.e., it becomes easier and easier to actually find such structured
knowledge for all different kinds of application domains. That this is the case is,
among other things, a result of recent developments in the field of Semantic Web
[4,12], which is concerned with data sharing, discovery, integration and reuse,
and where corresponding standards, methods and tools are being developed.
E.g., structured data in the form of knowledge graphs, usually encoded using
the W3C standards RDF [3] and OWL [11], has been made available in ever
increasing quantities for over 10 years [5,17]. Other large-scale datasets include
Wikidata [20] and data coming from the schema.org [9] effort which is driven by
major Web search engine providers.

In order to motivate the rest of the paper, consider the following very sim-
ple example. Assume that the input-output mapping P of the neural network
without background knowledge is

p1 ∧ q → r p2 ∧ q → r

and that we also have background knowledge K in form of the rules

p1 → p p2 → p.

We then obtain the simplified input-output mapping PK , taking background
knowledge into account, as

p ∧ q → r.

The example already displays a key insight why background knowledge can
lead to simpler extracted rulesets: In the example just given, p serves as a “more
general” proposition, e.g., p1 could stand for “is an apple” while p2 could stand
for “is a banana”, while p could stand for “is a fruit”. If we now also take, e.g.,
q to stand for “is ripe” and r to stand for “can be harvested”, then we obtain a
not-so-abstract toy example, where the background knowledge facilitates a sim-
plification because it captures both apples and bananas using the more general
concept “fruit”.

In this paper, we will formally define the setting for which we just gave an
initial example. We will furthermore investigate to what extent we can carry over
results regarding positive rulesets from [15] to this new scenario with background



Propositional Rule Extraction under Background Knowledge 3

knowledge. We will see that the pleasing theoretical results such as uniqueness of
a solution no longer hold. However, existence of solutions can still be guaranteed
under the same mild conditions as in [15], and we will still be able to obtain
algorithms for extracting corresponding rulesets.

The rest of the paper will be structured as follows. In Section 2 we will
introduce notation as needed and recall preliminary results from [15]. In Section 3
we present the results of our investigation into adding background knowledge.
In Section 4, we briefly discuss related work, and in Section 5 we conclude and
discuss avenues for furture work.

2 Preliminaries

We recall notation and some results from [15] which will be central for the rest of
the paper. For further background on notions concerning logic programs, cf. [13].

As laid out in the introduction, let B be a finite set of propositional variables,
let I be the power set of B, and we consider functions f : I → I as discretizations
of input-output functions of trained neural networks. In this paper, we consider
only positive (or definite) propositional rules, which are of the form p1∧· · ·∧pn →
q, where q and all pi are propositional variables. A set P of such rules is called
a (propositional) logic program. For such a rule, we call q the head of the rule,
and p1 ∧ · · · ∧ pn the body of the rule.

A logic program P is called reduced if all of the following hold.

1. For every rule p1∧· · ·∧pn → q in P we have that all pi are mutually distinct.
2. There are no two rules p1 ∧ · · · ∧ pn → q and r1 ∧ · · · ∧ rm → q in P with
{p1, . . . , pn} ⊆ {r1, . . . , rm}.

To every propositional logic program P over B we can associate a semantic
operator TP , called the immediate consequence operator, which is the function

TP : I → I :

TP (I) = {q | there exists p1 ∧ · · · ∧ pn → q in P with {p1, . . . , pn} ⊆ I}.

This operator is well-known to be monotonic in the sense that whenever I ⊆ J ,
then TP (I) ⊆ TP (J).

We make some additional mild assumptions: We assume that the proposi-
tional variables used to represent input and output nodes are distinct, i.e., each
propositional variable gets used either to represent an input node, or an output
node, but not both. Technically, this means that B can be partitioned into two
sets B1 and B2, i.e., B = B1 ∪̇ B2, and we obtain the corresponding power sets
I1 and I2 such that TP : I1 → I2.

While the definition of the immediate consequence operator just presented
is very common in the literature, we will now give a different but equivalent
formalization, which will help us in this paper. For any I = {p1, . . . , pn} ⊆ B,
let c(I) = p1 ∧ · · · ∧ pn. In fact, whenever I ⊆ B, in the following we will often
simply write I although we may mean c(I), and the context will make it clear
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Algorithm 1: Reduced Definite Program Extraction

Input: A monotone mapping f : I1 → I2.
Output: P , a definite logic program with TP (I) = f(I) for all I ∈ I1.
1: Initialization: P = ∅.
2: Choose a total linear order ≺ on I1, such that for any Ii, Ij ∈ I1 with i < j

we have |Ii| < |Ij |.
3: for all I = {p1, . . . , pn} ∈ I1, chosen in ascending order according to ≺ do
4: for all q ∈ f(I) do
5: if there is no q1 ∧ · · · ∧ qn → q in P with {q1, . . . , qn} ⊆ I then
6: add the rule p1 ∧ · · · ∧ pn → q to P .
7: end if
8: end for
9: end for

10: Return P as result.

which notation is meant; e.g., if I appears as part of a logical formula, then we
actually mean c(I).

Now, given a logic program P and I ∈ I1, we obtain

TP (I) = {q ∈ B2 | I ∧ P |= q},

where |= denotes entailment in propositional logic. Please note that we use an-
other common notational simplification, as I ∧P is used to denote I ∧

∧
R∈P R.

In [15], the following was shown.

Theorem 1. Let f : I1 → I2 be monotonic. Then there exists a unique reduced
logic program P with TP = f . Furthermore, this logic program can be obtained
using Algorithm 1.

If we drop the precondition on f to be monotonic, then Theorem 1 no longer
holds, because of the fact mentioned above that immediate consequence opera-
tors are always monotonic.

We will now investigate Theorem 1 when considering additional background
knowledge. It will be helpful to have the following corollary from Theorem 1 at
hand.

Theorem 2. Given a logic program P , there is always a unique reduced logic
program Q with TP = TQ.

Proof. Given P , we know that TP is monotonic. Now apply Theorem 1.

Let us give an example for reducing a given program. Let B1 = {p1, p2, p3}
and B2 = {q1, q2} be input and output sets, respectively, and consider the logic
program P given as

p1 ∧ p2 → q1 p1 ∧ p2 ∧ p3 → q1

p1 ∧ p3 → q1 p1 → q2

p1 ∧ p2 → q2.
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Applying Algorithm 1 then yields the reduced program

p1 ∧ p2 → q1 p1 ∧ p3 → q1

p1 → q2.

3 Rule extraction with Background Knowledge

We consider the following setting. Assume P is a logic program which captures
the input-output function of a trained neural network according to Theorem 1.
Let furthermore K be a logic program which constitutes our background knowl-
edge, and which may use additional propositional variables, i.e., propositional
variables not occurring in P . We then seek a logic program PK such that, for all
I ∈ I1, we have

{q ∈ B2 | I ∧ P |= q} = {q ∈ B2 | I ∧K ∧ PK |= q}. (1)

In this case, we call PK a solution for (P,K).

3.1 Existence of Solutions

We next make two more mild assumptions, namely (1) that no propositional
variable from B2 appears in K, and that (2) propositional variables from B1
appear only in bodies of rules in K. The first is easily justified by the use case,
since we want to explain the network behaviour, and the occurrence of variables
from B2 in K would bypass the network. The second is also easily justified by the
use case, which indicates that network input activations should be our starting
point, i.e. the activations should not be altered by the background knowledge.

If we drop assumption (2) just stated, then existence of a solution cannot
be guaranteed: Let B1 = {p1, p2}, let B2 = {q1, q2}. Then, for the given pro-
grams P = {p1 → q1, p2 → q2} and K = {p1 → p2} there is no solution for
(P,K). To see this, assume that PK be a solution for (P,K). Then because
p2 ∧ P |= q2 we obtain that p2 ∧ K ∧ PK |= q2. But then p1 ∧ K ∧ PK |= q2
although p1 ∧ P 6|= q2, i.e., PK cannot be a solution for (P,K).

If condition (2) from above is assumed, though, a solution always exists.

Proposition 1. Under our standing assumptions on given logic programs P and
K, there always exists a solution for (P,K) which is reduced.

Proof. Because rule heads from K never appear in P , we obtain

{q ∈ B2 | I ∧ P |= q} = {q ∈ B2 | I ∧K ∧ P |= q}

for all I ∈ I1, i.e., P is always a solution for (P,K). Existence of a reduced
solution then follows from Theorem 2.

Our interest of course lies in determining other solutions which are simpler
than P .
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Algorithm 2: Construct all reduced solutions for (P,K)

Input: Logic programs P and K with TP : I1 → I2 and TK : I1 → I3 which
satisfy our standing assumptions, where B2 = {q1, . . . , qn}.

Output: All the reduced solutions for (P,K).
1: Set S = ∅ and B = B1 ∪ B3.
2: Set I to be the power set of B.
3: Set R to be the power set of I.
4: for all (R1, . . . , Rn) ∈ Rn do
5: for all i ∈ {1, . . . , n} do
6: Qi = {c(B)→ qi | B ∈ Ri}
7: end for
8: Set Q =

⋃
i∈{1,...,n} Qi.

9: if TQ is a solution for (P,K) then
10: Apply Algorithm 1 to TQ to obtain a reduced program S with TS = TQ.
11: if S 6∈ S then
12: Add S to S.
13: end if
14: end if
15: end for
16: Return S as result.

Proposition 2. There exist logic programs P and K which satisfy our standing
assumptions, such that there are two distinct reduced solutions for (P,K).

Proof. Let B1 = {p1, p2, p3} and B2 = {q}. Then consider the programs P as

p2 ∧ p3 → q p1 ∧ p3 → q

and K as

p2 ∧ p3 → r1 p1 ∧ p3 → r1

p1 → r2 p2 → r2.

The two logic programs

PK1
= {r1→ q} and

PK2
= {p3 ∧ r2 → q}

are then both reduced solutions for (P,K).

We will see later in the proof of Theorem 3, that the number of reduced
solutions is actually worst-case exponential in the combined size of P and K.

3.2 Algorithms

We first present a naive algorithm for computing all reduced solutions for
given (P,K). It is given as Algorithm 2 and it uses a brute-force approach to
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check all possible logic programs which can be constructed over the given propo-
sitional variables, whether they constitute a solution for (P,K). For each such
solution, it then invokes Algorithm 1 to obtain a corresponding reduced pro-
gram, which is then added to the solution set. The algorithm is quite obviously
correct and always terminating, and we skip a formal proof of this.

The given algorithm is of course too naive to be practically useful for anything
other than toy examples. Still, it is worst-case optimal, as the following theorem
shows – note that Algorithm 2 has exponential runtime because of line 4.

Theorem 3. The problem of finding all solutions to (P,K) is worst-case expo-
nential in the combined size of P and K.

Proof. Let n be any positive integer. Define the logic program Pn to consist of
the single rule p1 ∧ · · · ∧ pn → q and let

Kn = {pi → ri,1, pi → ri,2 | i = 1, . . . , n}.

Then, for any function f : {1, . . . , n} → {1, 2}, the logic program

Pf = {r1,f(1) ∧ · · · ∧ rn,f(n) → q}

is a reduced solution for (Pn,Kn). Since there exist 2n distinct such functions
f , the number of reduced solutions in this case is 2n, so their production is
exponential in n, while the combined size of Pn and Kn grows only linearly in n.

A more efficient algorithm for obtaining only one reduced solution is given
as Algorithm 3. It is essentially a combination of Algorithms 1 and 2.

Proposition 3. Algorithm 3 is correct and always terminating.

Proof. Like Algorithm 1, Algorithm 3 checks all combinations of I ∈ I1 and
q ∈ TP (I) and makes sure that there are rules in the output program such that
I ∧ K ∧ S |= q. The rules for the output program are checked one by one in
increasing length until a suitable one is found. Note that the rule I → q is going
to be checked at some stage, i.e. the algorithm will either choose this rule, or a
shorter one, but in any case we will eventually have I ∧K ∧ S |= q. This shows
that the algorithm always terminates and that we obtain I ∧K ∧ S |= q for all
q ∈ TP (I).

In order to demonstrate that the algorithm output S is indeed a solution
for (P,K), we also need to show that for all q ∈ B2 and H ∈ I1 we have that
H ∧ K ∧ S |= q implies q ∈ TP (H). This is in fact guaranteed by line 11 of
Algorithm 3, i.e. the algorithm output S is indeed a solution for (P,K).

We finally show that the output of the algorithm is reduced. Assume oth-
erwise. Then there are I1 → q and J → q in S with I1 ( J . By our condition
on the order we thus have I1 ≺ J and so we know that I1 → q was added
to S earlier in the algorithm than J → q. now let us look at the instance of
line 12 in Algorithm 3 when the rule J → q was added to S. In this case (using
notation from the algorithm description, and S denoting the current S at that
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Algorithm 3: Reduced solution for (P,K)

Input: Logic programs P and K with TP : I1 → I2 and TK : I1 → I3 which
satisfy our standing assumptions.

Output: A reduced solution for (P,K).
1: Set S = ∅ and B = B1 ∪ B3.
2: Set I to be the power set of B.
3: Choose a total linear order ≺ on I, such that for any Ii, Ij ∈ I with i < j we

have |Ii| < |Ij |.
4: for all I = {p1, . . . , pm} ∈ I1, chosen in ascending order according to ≺ do
5: for all q ∈ TP (I) do
6: if I ∧K ∧ S 6|= q then
7: Set endloop = false.
8: Choose first J = {b1, . . . , bn} ∈ I according to ≺.
9: while endloop = false do

10: if I ∧K ∧ S ∧ (J → q) |= q then
11: if {H ∈ I1 | H ∧K ∧ S ∧ (J → q) |= q} ⊆ {H ∈ I1 | q ∈ TP (H)}

then
12: Add the rule J → q to S and set endloop = true.
13: end if
14: else
15: Choose next J = {b1, . . . , bn} ∈ I according to ≺.
16: end if
17: end while
18: end if
19: end for
20: end for
21: Return S as a result.

moment) we know that I ∧ K ∧ S ∧ (J → q) |= q and I ∧ K ∧ S 6|= q. This
implies I ∧K ∧ S |= J , and because I1 ⊆ J we obtain I ∧K ∧ S |= I1. But we
also have already observed that I1 → q is already contained in S at this stage,
and thus we obtain I ∧K ∧ S |= q, which contradicts the earlier statement that
I ∧ K ∧ S 6|= q. We thus have to reject the assumption that S is not reduced;
hence S is indeed reduced. This completes the proof.

To close, we give a somewhat more complex example. Let B1 = {p1, p2, p3}
and B = {q1, q2, q3, q4}. Consider the program P as

p1 → q1 p2 → q1

p1 → q2 p2 → q2

p1 → q3 p2 → q3

p1 → q4 p2 ∧ p3 → q4
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and K as

p1 → r1 p2 ∧ p3 → r1

p1 → r2 p2 → r2

p2 → r3.

Then there is only one reduced solution PK for (P,K), which is

r2 → q1 r2 → q2

r2 → q3 r1 → q4.

Note, that PK is simpler and shorter than P .

4 Related Work

It would be out of place to have a lengthy discussion of related work in neural-
symbolic integration, or even just on the topic of rule extraction, in this brief
paper. We hence limit ourselves to some key pointers including overview texts.
We already discussed the rule-extraction work [15] on which our work is based,
and [8] which pursues a different approach based on inspecting weights. For
more extensive entry points to literature on neural-symbolic integration we refer
to [2,6,7,10] and to the proceedings of the workshop series on Neural-Symbolic
Learning and Reasoning.3

Regarding the novel aspect of this work, namely the utilization of background
knowledge for rule extraction, we are not aware of any prior work which pursues
this. However, concurrently the second author has worked on lifting the idea to
the application level in [19], by utilizing description logics and Semantic Web
background knowledge in the form of ontologies and knowledge graphs [12] to-
gether with the DL-Learner system [16] for rule extraction. The results herein,
which are constrained to the propositional case, can be considered foundational
for the more application-oriented work currently pursued along the lines of [19].

We are also greatful that a reviewer pointed out a possible relationship of our
work with work laid out in [18] in the context of abduction in logic programming.
Looked at on a very generic level, the general abduction task is very similar to
our formulation in equation (1), which means that the field of abduction may in-
deed provide additional insights or even algorithms for our setting. On the detail
level, however, [18] differs significantly. Most importantly, [18] consideres literals
or atoms as abducibles, i.e., an explanation consists of a set of literals, while in
our setting explanations are actually rule sets. Another difference is that [18]
considers logic programs under the non-monotonic answer set semantics, i.e.,
logic programs with default negations, while we consider only logic programs
without negation in our work – it was laid out in much detail in [15] that propo-
sitional rule extraction under negation has a significantly different dynamics.
Nevertheless, the general field of abduction in propositional logic programming
may provide inspiration for further developing our approach, but working out
the exact relationships appears to be a more substantial investigation.

3 http://neural-symbolic.org/

http://neural-symbolic.org/
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5 Conclusions and Further Work

We have investigated the issue of propositional rule extraction from trained neu-
ral networks under background knowledge, for the case of definite rules. We have
shown that a mild assumption on the background knowledge and monotonicity
of the input-output function of the network suffices to guarantee that a reduced
logic program can be extracted such that the input-output function is exactly
reproduced. We have also shown that the solution is not unique. Furthermore,
we have provided algorithms for obtaining corresponding reduced programs.

We consider our results to be foundational for further work, rather than
directly applicable in practice. Our observation that background knowledge can
yield simpler extracted rulesets of course carries over to more expressive logics
which extend propositional logic.

It is such extensions which we intend to pursue, which hold significant promise
for practical applicability: structured information on the World Wide Web, as
discussed in the Introduction, is provided in logical forms which are usually
non-propositional fragments of first-order predicate logic, or closely related for-
malisms. In particular, description logics [1], i.e. decidable fragments of first-
order predicate logic, form the foundation of the Web Ontology Language OWL.
First-order rules are also commonly used [14]. This raises the question how to
extract meaningful non-propositional rules from trained neural networks while
taking (non-propositional) background knowledge, in a form commonly used on
the World Wide Web, into account.

Acknowledgements. The first two authors acknowledge support by the Ohio Fed-
eral Research Network project Human-Centered Big Data.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2nd edn. (2010)

2. Bader, S., Hitzler, P.: Dimensions of neural-symbolic integration – A structured
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Abstract. Current domain-independent, classical planners require sym-
bolic models of the problem domain and instance as input, resulting in
a knowledge acquisition bottleneck. Meanwhile, although recent work in
deep learning has achieved impressive results in many fields, the knowl-
edge is encoded in a subsymbolic representation which cannot be directly
used by symbolic systems such as planners. We propose LatPlan, an in-
tegrated architecture combining deep learning and a classical planner.
Given a set of unlabeled training image pairs showing allowed actions
in the problem domain, and a pair of images representing the start and
goal states, LatPlan uses a Variational Autoencoder to generate a dis-
crete latent vector from the images, based on which a PDDL model can
be constructed and then solved by an off-the-shelf planner. We evalu-
ate LatPlan using image-based versions of 3 planning domains: 8-puzzle,
LightsOut, and Towers of Hanoi.

1 Introduction

Recent advances in domain-independent planning have greatly enhanced their
capabilities. However, planning problems need to be provided to the planner in
a structured, symbolic representation such as PDDL [22], and in general, such
symbolic models need to be provided by a human, either directly in PDDL, or via
a compiler which transforms some other symbolic problem representation into
PDDL. This results in the knowledge-acquisition bottleneck, where the modeling
step is sometimes the bottleneck in the problem solving cycle. In addition, the
requirement for symbolic input poses a significant obstacle to applying planning
in new, unforeseen situations where no human is available to create such a model,
e.g., autonomous spacecraft exploration. This first requires generating symbols
from raw sensor input, i.e., the symbol grounding problem [30].

Recently, significant advances have been made in neural network (NN) ap-
proaches for cognitive tasks including image classification [8], object recognition
[26], speech recognition [9], machine translation as well as NN-based problem-
solving systems [23, 10]. However, the current state-of-the-art in pure NN-based
systems do not yet provide guarantees provided by symbolic planning systems,
such as deterministic completeness and solution optimality.
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Fig. 1. An image-based 8-puzzle.

Using a NN-based perceptual system to automatically provide input mod-
els for domain-independent planners could greatly expand the applicability of
planning technology and offer the benefits of both paradigms. We consider the
problem of robustly, automatically bridging the gap between such symbolic and
subsymbolic representations.

Fig. 1 (left) shows a scrambled, 3x3 tiled version of the the photograph on
the right, i.e., an image-based instance of the 8-puzzle. We seek a domain-
independent system which, given only a set of unlabeled images showing the
valid moves for this image-based puzzle, finds an optimal solution to the puz-
zle. Although the 8-puzzle is trivial for symbolic planners, solving this image-
based problem with a domain-independent system which has no prior assump-
tions/knowledge (e.g., “sliding objects”, “tile arrangement”, “a grid-like struc-
ture”) is nontrivial. The only assumption allowed about the nature of the task
is that it can be modeled and solved as a classical planning problem.

We propose Latent-space Planner (LatPlan), a hybrid architecture which
uses NN-based image processing to completely automatically generate a propo-
sitional, symbolic problem representation which can be used as the input for a
classical planner. LatPlan consists of 3 components: (1) a NN-based State Au-
toencoder (SAE), which provides a bidirectional mapping between the raw input
of the world states and its symbolic/categorical representation, (2) an action
model generator which generates a PDDL model using the symbolic represen-
tation acquired by the SAE, and (3) a symbolic planner. Given only a set of
unlabeled images from the domain as input, we train (unsupervised) the SAE
and use it to generate D, a PDDL representation of the image-based domain.
Then, given a planning problem instance as a pair of initial and goal images such
as Fig. 1, LatPlan uses the SAE to map the problem to a symbolic planning in-
stance in D, and uses the planner to solve the problem.

2 LatPlan: System Architecture

This section describes the LatPlan architecture and the current implementation,
LatPlanα. LatPlan works in 3 phases. In Phase 1 (symbol-grounding), a State
AutoEncoder providing a bidirectional mapping between raw data (e.g., images)
and symbols is learned (unsupervised) from a set of unlabeled images of repre-
sentative states. In Phase 2 (action model generation), the operators available
in the domain is generated from a set of pairs of unlabeled images, and a PDDL
domain model is generated. In Phase 3 (planning), a planning problem instance
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Fig. 2. Step 1: Train the State Autoencoder by minimizing the sum of the reconstruc-
tion loss (binary cross-entropy) and the variational loss of Gumbel-Softmax.

is input as a pair of images (i, g) where i shows an initial state and g shows a goal
state. These are converted to symbolic form using the SAE, and the problem is
solved by the symbolic planner. For example, an 8-puzzle problem instance in our
system consists of an image of the start (scrambled) configuration of the puzzle
(i), and an image of the solved state (g). Finally, the symbolic, latent-space plan
is converted to a human-comprehensible visualization of the plan.

Symbol Grounding with a State Autoencoder The State Autoencoder
(SAE) provides a bidirectional mapping between images and a symbolic repre-
sentation.

First, note that a direct 1-to-1 mapping between images and discrete objects
can be trivially obtained simply by using the array of discretized pixel values as
a “symbol”. However, such a trivial SAE lacks the crucial properties of gener-
alization – ability to encode/decode unforeseen world states to symbols – and
robustness – two similar images that represent “the same world state” should
map to the same symbolic representation. Thus, we need a mapping where the
symbolic representation captures the “essence” of the image, not merely the raw
pixel vector. The main technical contribution of this paper is the proposal of a
SAE which is implemented as a Variational Autoencoder [16] with a Gumbel-
Softmax (GS) activation function [14].

Gumbel-Softmax (GS) activation is a recently proposed reparametrization
trick [14] for categorical distribution. Using GS in the network in place of stan-
dard activation functions (Sigmoid, Softmax, ReLU) forces the activation to
converge to a discrete one-hot vector. GS has a “temperature” parameter τ
which controls the magnitude of approximation. τ is annealed by a schedule
τ ← max(0.1, exp(−rt)) where t is the current training epoch and r is an an-
nealing ratio [14]. We chose r so that τ = 0.1 when the training finishes.

In our implementation, the SAE is comprised of multilayer perceptrons com-
bined with Dropouts and Batch Normalization in both the encoder and the
decoder networks, with a GS layer in between. The input to the GS layer is the
flat, last layer of the encoder network. The output is an (N,M) matrix where
N is the number of categorical variables and M is the number of categories.

Our key observation is that these categorical variables can be used directly as
propositional symbols by a symbolic reasoning system, i.e., this provides a solu-
tion to the symbol grounding problem in our architecture. We specify M = 2,
effectively obtaining N propositional state variables. It is possible to specify
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Fig. 3. Classical planning in latent space: We use the learned State AutoEncoder to
convert pairs of images (pre, post) first to symbolic ground actions and then to a PDDL
domain. We also encode initial and goal state images into a symbolic ground actions and
then a PDDL problem. A classical planner finds the symbolic solution plan. Finally,
intermediate states in the plan are decoded back to a human-comprehensible image
sequence.

different M for each variable and represent the world using multi-valued repre-
sentation as in SAS+ [3] but we always use M = 2 for simplicity.

The trained SAE provides bidirectional mapping between the raw inputs
(subsymbolic representation) to and from their symbolic representations:

– b = Encode(r) maps an image r to a boolean vector b.
– r̃ = Decode(b) maps a boolean vector b to an image r̃.

Encode(r) maps raw input r to a symbolic representation by feeding the raw
input to the encoder network, extract the activation in the GS layer, and take
the first row in the N × 2 matrix, resulting in a binary vector of length N .
Similarly, Decode(b) maps a binary vector b back to an image by concatenating
b and its complement b̄ to obtain a N × 2 matrix and feeding it to the decoder.

It is not sufficient to use traditional activation functions such as softmax and
round the activation values to obtain discrete 0/1 values because we need to map
the symbolic plan back to images. We need a decoding network trained for 0/1
values approximated by a smooth function, e.g., GS or similar approach such
as [21]. A rounding-based scheme would be unable to restore the images from
discrete values because the decoder is trained using continuous values. Also,
the rounding operation cannot be part of a backpropagated network because
rounding is non-differentiable.

An SAE trained on a small fraction of the possible states successfully gen-
eralizes so that it can Encode and Decode every possible state in that domain.
In all our experiments below, we train the SAE using randomly selected images
from the domain. For example, on the 8-puzzle, the SAE trained on 12000 ran-
domly generated configurations out of 362880 possible configurations is used by
the domain model generator to Encode every 8-puzzle state.

Domain Model Generation The model generator takes as input a trained
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SAE, and a set R contains pairs of raw images. In each image pair (prei, posti) ∈
R, prei and posti are images representing the state of the world before and after
some action ai is executed, respectively. In each ground action image pair, the
“action” is implied by the difference between prei and posti. The output of
the model generator is a PDDL domain file for a grounded unit-cost STRIPS
planning problem. For each (prei, posti) ∈ R we apply the learned SAE to prei
and posti to obtain (Encode(prei), Encode(posti)), the symbolic representations
(latent space vectors) of the state before and after action ai is executed. This
results in a set of symbolic ground action instances A.

Ideally, a model generation component would induce a complete action model
from a limited set of symbolic ground action instances. However, action model
learning from a limited set of action instances is a nontrivial area of active
research [7, 11, 18, 24, 32, 6]. Since the focus of this paper is on the overall LatPlan
architecture and the SAE, we leave model induction for future work. Instead,
the current implementation LatPlanα uses a trivial, baseline strategy which
generates a model based on all ground actions, which are supposed to be easily
replaced by existing off-the-shelf action model learner. In this baseline method,
R contains image pairs representing all ground actions that are possible in this
domain, so A = {Encode(r)|r ∈ R} contains all symbolic ground actions possible
in the domain. In Sec. 5, we further discuss the implication and the impact of
this model. In the experiments (Sec. 3), we generate image pairs for all ground
actions using an external image generator. It is important to note that while R
contains all possible actions, R is not used for training the SAE. As explained
before, the SAE is trained using at most 12000 images while the entire state
space is much larger.

LatPlanα compiles A directly into a PDDL model as follows. For each action
(Encode(prei), Encode(posti)) ∈ A, each bit bj(1 ≤ j ≤ N) in these boolean
vectors is mapped to propositions (bj-true) and (bj-false) when the encoded
value is 1 and 0 (resp.). Encode(prei) is directly used as the preconditions of
action ai. The add/delete effects of action i are computed by taking the bit-
wise difference between Encode(prei) and Encode(posti). For example, when
bj changes from 1 to 0, it compiles into (and (bj-false) (not (bj-true))).
The initial and the goal states are similarly created by applying the SAE to the
initial and goal images.

Planning with an Off-the-Shelf Planner The PDDL instance generated
in the previous step can be solved by an off-the-shelf planner. LatPlanα uses the
Fast Downward planner [12]. However, on the models generated by LatPlanα,
the invariant detection routines in the Fast Downward PDDL-SAS converter
became a bottleneck, so we wrote a trivial, replacement PDDL-SAS converter
without the invariant detection.

LatPlan inherits all of the search-related properties of the planner which is
used. For example, if the planner is complete and optimal, LatPlan will find an
optimal plan for the given problem (if one exists), with respect to the portion
of the state-space graph captured by the acquired model. Domain-independent
heuristics developed in the planning literature are designed to exploit structure
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in the domain model. Although the structure in models acquired by LatPlan
may not directly correspond to those in hand-coded models, intuitively, there
should be some exploitable structure. The search results in Sec. 3 suggest that
the domain-independent heuristics can reduce the search effort.

Visualizing/Executing the Plans Since the actions comprising the plan
are SAE-generated latent bit vectors, the “meaning” of each symbol (and thus
the plan) is not necessarily clear to a human observer. However, we can obtain
a step-by-step visualization of the world (images) as the plan is executed (e.g.
Fig. 4) by starting with the latent state representation of the initial state, apply-
ing (simulating) actions step-by-step (according to the PDDL model acquired
above) and Decode’ing the latent bit vectors for each intermediate state to im-
ages using the SAE. In this paper, a “mental image” of the solution (i.e., the
image sequence visualization) is sufficient. In a less simplified setting, mapping
the actions found by LatPlan (transitions between latent bit vector pairs) to
lower-level actuation would be necessary (future work).

3 Experimental Evaluation

All of the SAE networks used in the evaluation have the same network topology
except the input layer which should fit the size of the input images. The net-
work consists of the following layers: [Input, GaussianNoise(0.1), fc(4000), relu,
bn, dropout(0.4), fc(4000), relu, bn, dropout(0.4), fc(49x2), GumbelSoftmax,
dropout(0.4), fc(4000), relu, bn, dropout(0.4), fc(4000), relu, bn, dropout(0.4),
fc(input), sigmoid]. Here, fc = fully connected layer, bn = Batch Normaliza-
tion, and tensors are reshaped accordingly. The last layers can be replaced with
[fc(input × 2), GumbelSoftmax, TakeFirstRow] for better reconstruction when
we can assume that the input image is binarized. The network is trained using
Adam optimizer (lr:0.001) for 1000 epochs.

The latent layer has 49 bits, which sufficiently covers the total number of
states in any of the problems that are used in the following experiments. This
could be reduced for each domain (made more compact) with further engineering.

MNIST 8-puzzle This is an image-based version of the 8-puzzle, where tiles
contain hand-written digits (0-9) from the MNIST database [20]. Each digit is
shrunk to 14x14 pixels, so each state of the puzzle is a 42x42 image. Valid moves
in this domain swap the “0” tile with a neighboring tile, i.e., the “0” serves as
the “blank” tile in the classic 8-puzzle. The entire state space consists of 362880
states (9!). Note that the same image is used for each digit in all states, e.g., the
“1” digit is the same image in all states.

Out of 362880 images, 12000 randomly selected images are used for training
the SAE. This set is further divided into a training set (11000) and a validation
set (1000). Training takes 40 minutes/1000 epochs on a NVIDIA GTX-1070.

Scrambled Photograph 8-puzzle The above MNIST 8-puzzle described
above consists of images where each digit is cleanly separated from the black
region. To show that LatPlan does not rely on cleanly separated objects, we
solve 8-puzzles generated by cutting and scrambling real photographs (similar to



7

0-tile corresponds to the blank
 tile in standard 8-puzzle

Right-eye tile corresponds
 to the blank tile in
standard 8-puzzle

Original
Mandrill
image:

Fig. 4. (Left) Output of solving the MNIST 8-puzzle instance with the longest (31
steps) optimal plan. [Reinefeld 1993] (Right) Output of solving a photograph-based
8-puzzle (Mandrill). We emphasize that LatPlan has no built-in notion of “sliding
object”, or “tile arrangement”; furthermore, the SAE is being trained completely from
scratch when LatPlan is applied to this scrambled photograph puzzle – there is no
transfer/reuse of knowledge from the SAE learned for the MNIST 8-puzzle.

↑Result of solving 3-disk Tower of Hanoi with the default network parameters. 

↑4-disk ToH with
 tuned parameters

 (optimal plan for the
 correct model)

↑4-disk ToH with the default parameters
(optimal plan wrto the flawed model by a confused SAE) 

Binarized results of the last steps→

Fig. 5. Output of solving ToH with 3 and 4 disks. The third picture is the result of
SAE with different parameters.

sliding tile puzzle toys sold in stores). We used the “Mandrill” image, a standard
benchmark in the image processing literature. The image was first converted to
greyscale and then rounded to black/white (0/1) values. The same number of
images as in the MNIST-8puzzle experiments are used.

Towers of Hanoi (ToH) Disks of various sizes must be moved from one
peg to another, with the constraint that a larger disk can never be placed on top
of a smaller disk. Due to the smaller number of states (3d states for d disks), we
used images of all states as the set of images for training SAE. This is further
divided into the training set (90%) and the validation set (10%), and we verified
that the network has learned a generalized model without overfitting.

3-disk ToH is solved successfully and optimally using the default hyperpa-
rameters (Fig. 5, top). However, on 4-disks, the SAE trained with the default
hyperparameters (Fig. 5, middle) is confused, resulting in a flawed model which
causes the planner to choose suboptimal moves (dashed box). Sometimes, the
size/existence of disks is confused (red box). Tuning the hyperparameters to re-
duce the SAE loss corrects this problem. After increasing the training epochs
(10000) and tuning the network shape (fc(6000), N = 29), the SAE generated a
correct model, resulting in the optimal 15-step plan (Fig. 5, bottom).
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Fig. 6. Output of solving 4x4 LightsOut (left) and its binarized result (right). Although
the goal state shows two blurred switches, they have low values (around 0.3) and
disappear after rounding.

Fig. 7. Output of solving 3x3 Twisted LightsOut.

LightsOut A video game where a grid of lights is in some on/off config-
uration (+: On), and pressing a light toggles its state (On/Off) as well as the
state of all of its neighbors. The goal is all lights Off. Unlike the 8-puzzle where
each move affects only two adjacent tiles, a single operator in 4x4 LightsOut can
simultaneously flip 5/16 locations. Also, unlike 8-puzzle and ToH, the Light-
sOut game allows some “objects” (lights) to disappear. This demonstrates that
LatPlan is not limited to domains with highly local effects and static objects.

Twisted LightsOut In all of the above domains, the “objects” correspond
to rectangles. To show that LatPlan does not rely on rectangular regions, we
demonstrate its result on “Twisted LightsOut”, a distorted version of the game
where the original LightsOut image is twisted around the center. Unlike previous
domains, the input images are not binarized.

Robustness to Noisy Input We show the robustness of the system against
the input noise. We corrupted the initial/goal state inputs by adding Gaussian
or salt noise, as shown in Fig. 8. The system is robust enough to successfully
solve the problem, because our SAE is a Denoising Autoencoder [31] which has
an internal GaussianNoise layer which adds a Gaussian noise to the inputs (only
during training) and learn to reconstruct the original image from a corrupted
version of the image.

8puzzle
+N(0,0.3)

Twisted LightsOut
+N(0,0.3)

Twisted LightsOut
+salt(0.06)

Fig. 8. SAE robustness vs noise: Corrupted initial state image r and its reconstruction
Decode(Encode(r)) by SAE on MNIST 8-puzzle and Twisted LightsOut. Images are
corrupted by Gaussian noise of σ up to 0.3 for both problems, and by salt noise up to
p = 0.06 for Twisted LightsOut. LatPlanα successfully solved the problems. The SAE
maps the noisy image to the correct symbolic vector b = Encode(r), conduct planning,
then map b back to the de-noised image Decode(b).
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Are Domain-Independent Heuristics Effective in Latent Space? We
compare the numbers of nodes expanded by a search using a greedy merging PDB
[28] and blind heuristics (i.e., breadth-first search) in Fast Downward:

– MNIST 8-puzzle (6 instances, mean(StdDev)): Blind 176658(25226), PDB
77811(32978)

– Mandrill 8-puzzle (1 instance with 31-step optimal solution, corresponding
to the 8-puzzle instance [25]): Blind 335378, PDB 88851

– ToH (4 disks, 1 instance): Blind 55, PDB 17,
– 4x4 LightsOut (1 instance): Blind 952, PDB 27,
– 3x3 Twisted LightsOut (1 instance): Blind 522, PDB 214

The domain-independent PDB heuristic significantly reduced node expan-
sions. Search times (< 3 seconds for all instances) were also faster for all in-
stances with the PDB. Although total runtimes including heuristic initialization
is slightly slower than blind search, in domains where goal states and operators
are the same for all instances (e.g., 8-puzzle) PDBs can be reused [19], and PDB
generation time can be amortized across many instances. Although these results
show that existing heuristics for classical planning are able to reduce search effort
compared to blind search, much more work is required in order to understand
how the features in latent space interact with existing heuristics.

4 Related Work

[18] propose a method for generating PDDL from a low-level, sensor actuator
space of an agent characterized as a semi-MDP. The inputs to their system
are 33 variables representing accurate structured input (e.g., x/y distances) or
categorical states (the on/off state of a button etc.) while LatPlan takes noisy
unstructured images (e.g., for 8-puzzle, 42x42=1764-dimensional arrays).

Compared to learning from observation (LfO) in the robotics literature [2],
(1) LatPlan is trained based on image pairs showing individual actions, not
plan executions (sequence of actions); (2) LatPlan focuses on PDDL for high-
level (puzzle-like) tasks, not on motion planning tasks. This significantly affects
the data collection scheme: While LfO has action segmentation issue because it
does not know when an action starts/ends in the plan traces (e.g. video clip),
LatPlan does not, because it assumes that a robot can explore the world by itself,
initiating/terminating its own action and taking pictures by a camera. The robot
can perform a random walk under physical constraints and supervision, which
ensure the legal moves (e.g., the physical tile in 8-puzzle). If we further assume
that it can “reset” the world (e.g., into a random configuration), then, the robot
could eventually obtain images of the entire state space.

A closely related line of work in LfO is learning of board game play from
videos [4, 15, 17]. Unlike LatPlan, these works make relatively strong assumptions
about the environment, e.g., that there is a grid-like environment.

There is a large body of previous work using neural networks to directly solve
combinatorial tasks, such as TSP [13] or Tower of Hanoi [5]. Although they use
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NNs to solve search problems, they assume a fully symbolic representation of
the problem as input. Other line of hybrid systems embed NNs inside a search
algorithm to provide search control knowledge [29, 1, 27]. In contrast, we use a
NN-based SAE for symbol grounding, not for search control.

Deep Reinforcement Learning (DRL) has solved complex image-based prob-
lems [23]. For unit-action-cost planning, LatPlan does not require a reinforce-
ment signal (reward function). Also, it can provide guarantees of completeness
and solution cost optimality.

5 Discussion and Conclusion

We proposed LatPlan, an integrated architecture for planning which, given only
a set of unlabeled images and no prior knowledge, generates a classical planning
problem model, solves it with a symbolic planner, and presents the resulting plan
as a human-comprehensible sequence of images. We demonstrated its feasibility
using image-based versions of planning/state-space-search problems (8-puzzle,
Towers of Hanoi, Lights Out). The key technical contribution is the SAE, which
leverages the Gumbel-Softmax reparametrization technique [14] and learns (un-
supervised) a bidirectional mapping between raw images and a propositional rep-
resentation usable by symbolic planners. Aside from the key assumptions about
the deterministic environment and the sufficient training images, we avoid as-
sumptions about the input domain. Thus, we have shown that domains with
different characteristics can all be solved by the same system. In other words,
LatPlan is a domain-independent, image-based classical planner.

To our knowledge, LatPlan is the first completely automated system of the
kind. However, as a proof-of-concept, it has significant limitations to be ad-
dressed in future work. In particular, the domain model generator in LatPlanα
does not perform action model learning from a small set of sample actions be-
cause the focus of this paper is not on action learning. Thus the current generator
requires the entire set of latent states, transitions and in turn images. While this
is obviously impractical, this is not a fundamental limitation of the LatPlan ar-
chitecture. The primitive generator is merely a placeholder for investigating the
overall feasibility of an SAE-based end-to-end planning system (our major con-
tribution) and is supposed to be easily replaced by the more sophisticated ones
[7, 18, 24, 32]. To our knowledge, all previous domain learning methods require
the structured (e.g., propositional) representations of states.

A related topic is how to specify a partial goal specification for LatPlan as
in IPC domains (e.g. “having tiles 0,1,2 in the correct places is the goal” in a
8-puzzle), rather than assuming a single goal state, is an interesting future work.

Finally, we do not claim that the specific implementation of SAE in this paper
works robustly on all images. Making a robust autoencoder is not a problem
unique to LatPlan, but rather, a fundamental problem in deep learning. Out
contribution is the demonstration that it is possible to leverage some existing
deep learning techniques quite effectively in an planning system, and future work
will continue leveraging further improvements in image processing techniques.
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Abstract. The ever increasing prevalence of publicly available struc-
tured data on the World Wide Web enables new applications in a variety
of domains. In this paper, we provide a conceptual approach that lever-
ages such data in order to explain the input-output behavior of trained
artificial neural networks. We apply existing Semantic Web technologies
in order to provide an experimental proof of concept.

1 Introduction

Trained neural networks are usually imagined as black boxes, in that they do
not give any direct indications why an output (e.g., a prediction) was made by
the network. The reason for this lies in the distributed nature of the information
encoded in the weighted connections of the network. Of course, for applications,
e.g., safety-critical ones, this is an unsatisfactory situation. Methods are therefore
sought to explain how the output of trained neural networks are reached.

This topic of explaining trained neural networks is not a new one, in fact there
is already quite a bit of tradition and literature on the topic of rule extraction
from such networks (see, e.g., [2,9,16]), which pursued very similar goals. Rule
extraction, however, utilized propositional rules as target logic for generating
explanations, and as such remained very limited in terms of explanations which
are human-understandable. Novel deep learning architectures attempt to retrieve
explanations as well, but often the use-case is only for computer vision tasks
like object or scene recognition. Moreover, explanations in this context actually
encode greater details about the images provided as input, rather than explaining
why or how the neural network was able to recognize a particular object or scene.

Semantic Web [4,12] is concerned with data sharing, discovery, integration,
and reuse. As field, it does not only target data on the World Wide Web, but its
methods are also applicable to knowledge management and other tasks off the
Web. Central to the field is the use of knowledge graphs (usually expressed using
the W3C standard Resource Description Framework RDF [3]) and type logics
attached to these graphs, which are called ontologies and are usually expressed
using the W3C standard Web Ontology Language OWL [11].

This paper introduces a new paradigm for explaining neural network be-
havior. It goes beyond the limited propositional paradigm, and directly targets
the problem of explaining neural network activity rather than the qualities of
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the input. The paradigm leverages advances in knowledge representation on the
World Wide Web, more precisely from the field of Semantic Web technologies. It
in particular utilizes the fact that methods, tool, and structured data in the men-
tioned formats are now widely available, and that the amount of such structured
data on the Web is in fact constantly growing [5,18]. Prominent examples of
large-scale datasets include Wikidata [22] and data coming from the schema.org
[10] effort which is driven by major Web search engine providers. We will utilize
this available data as background knowledge, on the hypothesis that background
knowledge will make it possible to obtain more concise explanations. This ad-
dresses the issue in propositional rule extraction that extracted rulesets are often
large and complex, and due to their sizes difficult to understand for humans.
While the paper only attempts to explain input-output behavior, the authors
are actively exploring ways to also explain internal node activations.

An illustrative example

Let us consider the following very simple example which is taken from [14].
Assume that the input-output mapping P of the neural network without back-
ground knowledge could be extracted as

p1 ∧ q → r p2 ∧ q → r.

Now assume furthermore that we also have background knowledge K in form of
the rules

p1 → p p2 → p.

The background knowledge then makes it possible to obtain the simplified input-
output mapping PK , as

p ∧ q → r.

The simplification through the background knowledge is caused by p acting
as a “generalization” of both p1 and p2. For the rest of the paper it may be
beneficial to think of p, p1 and p2 as classes or concepts, which are hierarchically
related, e.g., p1 being “oak,” p2 being “maple,” and p being “tree.”

Yet this example is confined to propositional logic.1 In the following, we show
how we can bring structured (non-propositional) Semantic Web background
knowledge to bear on the problem of explanation generation for trained neu-
ral networks, and how we can utilize Semantic Web technologies in order to
generate non-propositional explanations. This work is at a very early stage, i.e.,
we will only present the conceptual architecture of the approach and minimal
experimental results which are encouraging for continuing the effort.

The rest of the paper is structured as follows. In Section 2 we introduce nota-
tion as needed, in particular regarding description logics which underly the OWL
standard, and briefly introduce the DL-Learner tool which features prominently
in our approach. In Section 3 we present the conceptual and experimental setup

1 How to go beyond the propositional paradigm in neural-symbolic integration is one
of the major challenges in the field [8].
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for our approach, and report on some first experiments. In Section 4 we conclude
and discuss avenues for future work.

2 Preliminaries

We describe a minimum of preliminary notions and information needed in order
to keep this paper relatively self-contained. Description logics [1,12] are a major
paradigm in knowledge representation as a subfield of artificial intelligence. At
the same time, they play a very prominent role in the Semantic Web field since
they are the foundation for one of the central Semantic Web standards, namely
the W3C Web Ontology Language OWL [11,12].

Technically speaking, a description logic is a decidable fragment of first-order
predicate logic (sometimes with equality or other extensions) using only unary
and binary predicates. The unary predicates are called atomic classes,2 while the
binary ones are refered to as roles,3 and constants are refered to as individuals.
In the following, we formally define the fundamental description logic known as
ALC, which will suffice for this paper. OWL is a proper superset of ALC.

Desciption logics allow for a simplified syntax (compared to first-order pred-
icate logic), and we will introduce ALC in this simplified syntax. A translation
into first-order predicate logic will be provided further below.

Let C be a finite set of atomic classes, R be a finite set of roles, and N be a
finite set of individuals. Then class expressions (or simply, classes) are defined
recursively using the following grammar, where A denotes atomic classes from
A and R denotes roles from R. The symbols u and t denote conjunction and
disjunction, respectively.

C,D ::= A | ¬C | C uD | C tD | ∀R.C | ∃R.C

A TBox is a set of statements, called (general class inclusion) axioms, of
the form C v D, where C and D are class expressions – the symbol v can be
understood as a type of subset inclusion, or alternatively, as a logical implication.
An ABox is a set of statements of the forms A(a) or R(a, b), where A is an
atomic class, R is a role, and a, b are individuals. A description logic knowledge
base consists of a TBox and an ABox. The notion of ontology is used in different
ways in the literature; sometimes it is used as equivalent to TBox, sometimes as
equivalent to knowledge base. We will adopt the latter usage.

We characterize the semantics of ALC knowledge bases by giving a transla-
tion into first-order predicate logic. If α is a TBox axiom of the form C v D,
then π(α) is defined inductively as in Figure 1, where A is a class name. ABox
axioms remain unchanged.

DL-Learner [6,17] is a machine learning system inspired by inductive logic
programming [20]. Given a knowledge base and two sets of individuals from the
knowledge base – called positive respectively negative examples – DL-Learner

2 or atomic concepts
3 or properties



4 Sarker, Xie, Doran, Raymer, Hitzler

π(C v D) = (∀x0)(πx0(C) → πx0(D))

πxi(A) = A(xi)

πxi(¬C) = ¬πxi(C)

πxi(C uD) = πxi(C) ∧ πxi(D)

πxi(C tD) = πxi(C) ∨ πxi(D)

πxi(∀R.C) = (∀xi+1)(R(xi, xi+1) → πxi+1(C))

πxi(∃R.C) = (∃xi+1)(R(xi, xi+1) ∧ πxi+1(C))

Fig. 1. Translating TBox axioms into first-order predicate logic. We use auxiliary func-
tions πxi , where the xi are variables. The axiom A v ∃R.∃S.B, for example, would be
translated to (∀x0)((A(x0)) → (∃x1)(R(x0, x1) ∧ (∃x2)(S(x1, x2) ∧B(x2)))).

Fig. 2. Michalski’s trains, picture from [15]. Positive examples on the left, negative
ones on the right.

attempts to construct class expressions such that all the positive examples are
contained in each of the class expressions, while none of the negative examples
is. DL-Learner gives preference to shorter solutions, and in the standard setting
returns approximate solutions if no fully correct solution is found. The inner
workings of DL-Learner will not matter for this paper, and we refer to [6,17] for
details. However, we exemplify its functionality by looking at Michalski’s trains
as an example, which is a symbolic machine learning task from [15], and which
was presented also in [17].

For purposes of illustrating DL-Learner, Figure 2 shows two sets of trains, the
positive examples are on the left, the negative ones are on the right. Following
[17], we use a simple encoding of the trains as a knowledge base: Each train is an
individual, and has cars attached to it using the hasCar property, and each car
then falls into different categories, e.g., the top leftmost car would fall into the
classes Open, Rectangular and Short, and would also have information attached
to it regarding symbol carried (in this case, square), and how many of them (in
this case, one). Given these examples and knowledge base, DL-Learner comes
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Fig. 3. Conceptual architecture – see text for explanations.

up with the class

∃hasCar.(Closed u Short)

which indeed is a simple class expression such that all positive examples fall
under it, while no negative example does.

3 Approach and Experiments

In this paper, we follow the lead of the propositional rule extraction work men-
tioned in the introduction, with the intent of improving on it in several ways.

1. We generalize the approach by going significantly beyond the propositional
rule paradigm, by utilizing description logics.

2. We include significantly sized and publicly available background knowledge
in our approach in order to arrive at explanations which are more concise.

More concretely, we use DL-Learner as the key tool to arrive at the ex-
planations. Figure 3 depicts our conceptual architecture: The trained artificial
neural network (connectionist system) acts as a classifier. Its inputs are mapped
to a background knowledge base and according to the networks’ classification,
positive and negative examples are distinguished. DL-Learner is then run on
the example sets and provides explanations for the classifications based on the
background knowledge.

In the following, we report on preliminary experiments we have conducted
using our approach. Their sole purpose is to provide first and very preliminary
insights into the feasibility of the proposed method. All experimental data is
available from http://daselab.org/projects/human-centered-big-data.

We utilize the ADE20K dataset [23,24]. It contains 20,000 images of scenes
which have been pre-classified regarding scenes depicted, i.e., we assume that the

http://daselab.org/projects/human-centered-big-data
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Fig. 4. Test images. Positive examples p1, p2, p3 on the left (from top), negative ex-
amples n1, n2, n3 on the right (from top).

classification is done by a trained neural network.4 For our initial test, we used
six images, three of which have been classified as “outdoor warehouse” scenes
(our positive examples), and three of which have not been classified as such (our
negative examples). In fact, for simplicity, we took the negative examples from
among the images which had been classified as “indoor warehouse” scenes. The
images are shown in Figure 4.

The ADE20K dataset furthermore provides annotations for each image which
identify information about objects which have been identified in the image. The
annotations are in fact richer than that and also talk about the number of
objects, whether they are occluded, and some more, but for our initial experiment
we only used presence or absence of an object. To keep the initial experiment
simple, we furthermore only used those detected objects which could easily be
mapped to our chosen background knowledge, the Suggested Upper Merged
Ontology (SUMO).5 Table 1 shows, for each image, the objects we kept. The
Suggested Upper Merged Ontology was chosen because it contains many, namely
about 25,000 common terms which cover a wide range of domains. At the same

4 Strictly speaking, this is not true for the training subset of the ADE20K dataset,
but that doesn’t really matter for our demonstration.

5 http://www.adampease.org/OP/

http://www.adampease.org/OP/
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image p1: road, window, door, wheel, sidewalk, truck, box, building
image p2: tree, road, window, timber, building, lumber
image p3: hand, sidewalk, clock, steps, door, face, building, window, road
image n1: shelf, ceiling, floor
image n2: box, floor, wall, ceiling, product
image n3: ceiling, wall, shelf, floor, product

Table 1. Objects recorded for each image.

time, the ontology arguably structures the terms in a relatively straightforward
manner which seemed to simplify matters for our initial experiment.

In order to connect the annotations to SUMO, we used a single role called
“contains.” Each image was made an individual in the knowledge base. Further-
more, for each of the object identifying terms in Table 1, we either identified
a corresponding matching SUMO class, or created one and added it to SUMO
by inserting it at an appropriate place within SUMO’s class hierarchy. We fur-
thermore created individuals for each of the object identifying terms, including
duplicates, in Table 1, and added them to the knowledge base by typing them
with the corresponding class. Finally, we related each image individual to each
corresponding object individual via the “contains” role.

To exemplify – for the image p1 we added individuals road1, window1,
door1, wheel1, sidewalk1, truck1, box1, building1, declared Road(road1), Win-
dow(window1), etc., and finally added the ABox statements contains(p1, road1),
contains(p1,window1), etc., to the knowledge base. For the image p2, we added
contains(p2, tree2), contains(p2, road2), etc. as well as the corresponding type
declarations Tree(tree2), Road(road2), etc.

The mapping of the image annotations to SUMO is of course very simple,
and this was done deliberately in order to show that a straightforward approach
already yields interesting results. As our work progresses, we do of course an-
ticipate that we will utilize more complex knowledge bases and will need to
generate more complex mappings from picture annotations (or features) to the
background knowledge.

Finally, we ran DL-Learner on the knowledge base, with the positive and
negative examples as indicated. DL-Learner returns 10 solutions, which are listed
in Figure 5. Of these, some are straightforward from the image annotations,
such as (1), (5), (8, (9) and (10). Others, such as (2), (4), (6), (7) are much
more interesting as they provide solutions in terms of the background knowledge
without using any of the terms from the original annotation. Solution (3) looks
odd at first sight, but is meaningful in the context of the SUMO ontology:
SelfConnectedObject is an abstract class which is a direct child of the class
Object in SUMO’s class hierarchy. Its natural language definition is given as
“A SelfConnectedObject is any Object that does not consist of two or more
disconnected parts.” As such, the class is a superclass of the class Road, which
explains why (3) is indeed a solution in terms of the SUMO ontology.
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∃contains.Window (1)

∃contains.Transitway (2)

∃contains.SelfConnectedObject (3)

∃contains.Roadway (4)

∃contains.Road (5)

∃contains.LandTransitway (6)

∃contains.LandArea (7)

∃contains.Building (8)

∀contains.¬Floor (9)

∀contains.¬Ceiling (10)

Fig. 5. Solutions produced by DL-Learner for the warehouse test.

We have conducted four additional experiments along the same lines as de-
scribed above. We briefly describe them below – the full raw data and results
are available from http://daselab.org/projects/human-centered-big-data.

In the second experiment, we chose four workroom pictures as positive exam-
ples, and eight warehouse pictures (indoors and outdoors) as negative examples.
An example explanation DL-Learner came up with is

∃contains.(DurableGood u ¬ForestProduct).

On of the outdoor warehouse pictures indeed shows timber. DurableGoods in
SUMO include furniture, machinery, and appliances.

In the third experiment, we chose the same four workroom pictures as neg-
ative examples, and the same eight warehouse pictures (indoors and outdoors)
as positve examples. An example explanation DL-Learner came up with is

∀contains.(¬Furniture u ¬IndustrialSupply),

i.e., “contains neither furniture nor industrial supply”. IndustrialSupply in SUMO
includes machinery. Indeed it turns out that furniture alone is insufficient for
distingushing between the positive and negative exaples, because “shelf” is not
classified as funiture in SUMO. This shows the dependency of the explanations
on the conceptualizations encoded in the background knowledge.

In the fourth experiment, we chose eight market pictures (indoors and out-
doors) as positive examples, and eight warehouse pictures (indoors and outdoors)
as well as four workroom pictures as negative examples. An example explanation
DL-Learner came up with is

∃contains.SentientAgent,

And indeed it turns out that people are shown on all the market pictures. There
is actually also a man shown on one of the warehouse pictures, driving a forklift,
however “man” or “person” was not among the annotations used for the picture.
This example indicates how our approach could be utilized: A human monitor
inquiring with an interactive system about the reasons for a certain classification
may notice that the man was missed by the software on that particular picture,
and can opt to interfere with the decision and attempt to correct it.

In the fifth experiment, we chose four mountain pictures as positive examples,
and eight warehouse pictures (indoors and outdoors) as well as four workroom

http://daselab.org/projects/human-centered-big-data
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pictures as negative examples. An example explanation DL-Learner came up
with is

∃contains.BodyOfWater.

Indeed, it turns out that all mountain pictures in the example set show either a
river or a lake. Similar to the previous example, a human monitor may be able
to catch that some misclassifications may occur because presence of a body of
water is not always indicative of presence of a mountain.

4 Conclusions and Further Work

We have laid out a conceptual sketch how to approach the issue of explaining
artificial neural networks’ classification behaviour using Semantic Web back-
ground knowledge and technologies, in a non-propositional setting. We have
also reported on some very preliminary experiments to support our concepts.

The sketch already indicates where to go from here: We will need to in-
corporate more complex and more comprehensive background knowledge, and
if readily available structured knowledge turns out to be insufficient, then we
foresee using state of the art knowledge graph generation and ontology learn-
ing methods [13,19] to obtain suitable background knowledge. We will need to
use automatic methods for mapping network input features to the background
knowledge [7,21], while the features to be mapped may have to be generated
from the input in the first place, e.g. using object recognition software in the
case of images. And finally, we also intend to apply the approach to sets of hidden
neurons in order to understand what their activations indicate.

Acknowledgements. This work was supported by the Ohio Federal Research Net-
work project Human-Centered Big Data.
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Abstract. The learning of rules from examples is of continuing interest
to machine learning since it allows generalization from fewer training ex-
amples. Inductive Logic Programming (ILP) generates hypothetical rules
(clauses) from a knowledge base augmented with (positive and negative)
examples. A successful hypothesis entails all positive examples and does
not entail any negative example. The Shared Neural Multi-Space (Shared
NeMuS) structure encodes first order expressions in a graph suitable for
ILP-style learning. This paper explores the NeMuS structure and its re-
lationship with the Herbrand Base of a knowledge-base to generate hy-
potheses inductively. It is demonstrated that inductive learning driven
by the knowledge-base structure can be implementated successfully in
the Amao cognitive agent framework, including the learning of recursive
hypotheses.

1 Introduction

There is renewed interest in inductive logic programming as a framework for
machine learning owing to its human like ability to infer new knowledge from
background knowledge together with a small number of examples. It also comes
with strong mathematical and logical underpinnings. This paper builds on [9],
where a data structure (Shared NeMuS) for the representation of first-order logic
was introduced. It revisits inductive logic programming and demonstrates that
Shared NeMuS provides a structure that can be used to build an inductive logic
programming system.

A part of the Shared NeMuS structure is weightings on individual elements
(atom, predicate, function). The purpose of these weightings is to provide a guide
to the use of these elements, for example in theorem proving. One of the key
challenges in inductive logic programming is to find good heuristics to search
the hypothesis space; the long-term goal of this work is to learn weights in a
training phase that can in turn be used to guide the search of the hypothesis
space and improve the efficiency and success of inductive learning.

The main purpose of this work is to present a new approach for Clausal
Inductive Learning (CIL) using Shared NeMuS in which the search mechanism



uses the Herbrand Base (HB) to build up hypothesis candidates using inverse
unification. This generalization of ground expressions to universally quantified
ones is supported by the idea of regions of concepts that was explored in [9] to find
refutation patterns. Here, weights are not explicitly used, but the intuitive use of
them is explored to define linkage patterns between predicates of the HB and the
occurrences of ground terms in positive examples. Meaningless hypotheses are
pruned away as a result of inductive momentum between predicates connected to
positive and negative examples. This paper makes the following contributions: it
is demonstrated that the Shared NeMuS data structure can be used as a suitable
structure for inductive logic programming; the Herbrand Base is used to build
candidate hypotheses; chaining and abstraction for rules, including recursive
rules, are given; these rules help keep the number of hypotheses small. NeMuS
is designed for extension with machine learning tactics.

The remainder of this paper is structured as follows: section 2 gives some
brief background on inductive logic programming and the Shared NeMuS data
structure, sections 3 and 4 describe the implementation of inductive learning in
Amao using the Shared NeMuS data structure, then section 5 describes some
related work and section 6 discusses the work presented.

2 Background

2.1 Inductive Logic Programming (ILP)

The goal of inductive logic programming (introduced in [10]) is to learn logical
formulae that describe a target concept, based on a set of examples. In a typical
set up there is a knowledge base of predicates, called background knowledge
(BK), along with a set of examples that the target concept should prove (positive
examples, e+) and a set of examples that the target concept should not prove
(negative examples, e−). The inductive logic programming problem is to search
for a logical description (a hypothesis, H) of the target concept based on the
knowledge and the examples so that the knowledge base plus the hypothesis
entails the positive examples, whilst does not entail the negative examples.

Inductive logic programming systems implement search strategies over the
space of possible hypotheses. A good heuristic is one that will a) arrive at a suc-
cessful hypothesis, b) find this hypothesis quickly and c) find a succinct hypoth-
esis. In order to achieve this, the efficiency of hypothesis searching mechanisms
depend on partial order of θ-subsumption [13], or on a total ordering over the
Herbrand Base to constrain deductive, abductive and inductive operations [12].

The approach presented in this paper for CIL takes a totally different ap-
proach. Search considers separated spaces for constant terms, predicates and
clauses, and elements are indexed by their unique identification codes. The spaces
are interconnected through weighted bindings pointing to the target space in
which an occurrence of an element appears. This creates a network of shared
spaces because the elements are shared via bindings. As the weights are not
used here, the networks shall be referred to as multi-spaces.



2.2 Shared NeMuS

Shared Neural Multi-Space (Shared NeMuS) [9] takes inspiration from [2] to give
a shared multi-space representation for a portion of first-order logic designed for
use with machine learning and neural network methods. The structure incorpo-
rates a relative degree of importance for each element according to the element’s
attributes and uses an architecture that leads to a fast implementation.

Shared NeMuS uses a Smarandache multi-space [8], a union of n spaces
A1, ..., An in which each Ai is the space of a distinct observed characteristic of
the overall space. For each Ai there is a different metric to describe a different
side of the ”major” side. There will be a space for each component of a first-order
language: atomic constants (of the Herbrand Universe, space 0), functions (space
1), predicates with literal instances (space 2), and clauses (space 3). Variables
are used to refer to sets of atomic terms via quantification, and they belong to
the same space of atoms. In this work, the function space is suppressed, since it
is not being dealt with for relational learning. In what follows vectors are written
v, and v[i] or vi is used to refer to an element of a vector at position i.

Each logical element is described by a T-Node, and in particular each element
is described by a unique integer code within its space. In addition, a T-Node
identifies the lexicographic occurrence of the element, and (when appropriate)
an attribute position.

Definition 1 (T-Node and Binding) Let c, a, i ∈ Z and h ∈ {0, 1, 2, 3}. A
T-Node (target node) is a quadruple (h, c, i, a) that identifies an object at space
h, with code c and occurrence i, at attribute position a (when it applies, otherwise
1). If p is a T-Node, then nh(p) = h, nc(p) = c, na(p) = a and ni(p) = i. A
NeMuS Binding is a pair (p, w)k, which represents the influence w of object k
over occurrence ni(p) of object nc(p) at space nh(p) in position na(p).

The elements of the subject space represent all of the occurrences of atoms
and variables in an expression.

Definition 2 (Subject Space) Let C = [x1, . . . ,xm] and V = [y1, . . . ,yn],
where each xi,yi is a vector of bindings. Subject Space refers to the pair (C,V )
for constants and variables, respectively.

The function β maps a constant i to the vector of its bindings xi, as above.
Higher spaces are made of structured elements, such as predicates and clauses.

Such objects have attributes uniquely identified by T-Nodes referring to objects
in the spaces below and their bindings of the objects on which they exert influ-
ence.

Definition 3 (Compound) Let xi
a = [c1, . . . , cm] be a vector of T-Nodes for

each attribute instance of compound i. Let wi be a vector of NeMuS bindings.
Then a NeMuS Compound is the pair (xi

a,wi). A NeMuS Compound Space
(C-Space) is a vector of NeMuS Compounds.



For each literal there is a C-Space to represent it. Since a literal is an instance
of a predicate the predicate space is a vector of C-Spaces. As predicates have
positive and negative instances, there are two vector regions for a predicate
space. Clauses’ attributes are the literals that they are made of, and as they
exert no influence upon spaces above for simplicity the bindings of a clause shall
be empty.

Definition 4 (Predicate and Clause Spaces) Let C+
p and C−

p be two vec-

tors of C-spaces. The pair (C+
p ,C

−
p ) is called the NeMuS Predicate Space. A

NeMuS Clause Space is a vector of C-spaces such that every pair in the vector
shall be (xi

a, []).

A Shared NeMuS for a coded first-order expression is a triple 〈S,P, C〉, in
which S is the subject space, P is the predicate space and C is the clause space.

Example 1. Assume the following symbolic BK (adapted from [3]):

mother(pam,ann).

wife(ann,bob).

wife(eve,wallie).

brother(wallie, ann).

This translates into the Shared NeMuS below (with weights at default value of
0). The constant region of the subject space, the predicate space and the clause
space are each given with some commentary. The labels and the numbers before
the column are just to emphasise structure.

Subject Space: Constant region: {

1:[((2,1,1,1),0)]

2:[(2,1,1,2),0),(2,2,1,1),0),((2,3,1,2),0)]

3:[((2,2,1,2),0)]

4:[((2,2,2,1),0)]

5:[((2,2,2,2),0),((2,3,1,1),0)] }

The subject space encodes the occurrences of the constants. For example, the
first entry gives the binding for pam, with code 1, stating that this atom occurs
in the first occurrence of the first predicate (mother) as the first attribute. The
second entry gives the list of bindings for the three occurrences of ann.

Predicate Space:

// pam ann

{+1:[([(0,1,1,1),(0,2,1,2)],[((3,1,1,1),0)])], -1: []}

// ann bob

{+2:[([(0,2,2,1),(0,3,1,2)],[((3,2,1,1),0)]),

([(0,4,1,1),(0,5,1,2)],[((3,3,1,1),0)])], -2: []}

{+3:[([(0,5,2,1),(0,2,3,2)],[((3,4,1,1),0)])], -3: []}

The predicate space encodes each predicate. For example, the first entry links to
the bindings of the two constants occurring in the only clause in which it occurs.
The second entry details the two clauses for wife.



Clause Space:

{([(2,1,2,1)],[()]), ([(2,2,2,1)],[()]),

([(2,2,3,1)],[()]), ([(2,3,2,1)],[()])}

Here, the clauses link back to the predicates that define them. For example, the
first entry says that the first clause is built from the first predicate.

This simple example shows how easy it is to navigate across a shared NeMuS
structure to induce new rules from relational data or sets of literals.

3 Inductive Learning with Shared NeMuS

This section describes, with the aid of running examples, how inductive learning
is performed in Amao, using the Shared NeMuS structure. Amao3 a cognitive
artificial agent which originally performed just symbolic reasoning on structured
clauses via Linear Resolution [16]. It was extended in [9] to generate a shared
NeMuS representation, during the compilation of symbolic representation, for
neural-symbolic reasoning purposes.

Inverse unification from HB is plausible since all ground expressions of a given
concept p will be at the same region as far as weighted grounds are concerned.
For instance, p(a, b), p(c, d) and p(b, e) all belong to the region of p. So, p(X,Y ) is
a sound generalization of such instances. However, if there are other concepts in-
volving the elements of the Herbrand Universe, say q(a, d) and r(d) then p(X,Y )
is not a straight generalization without taking into account the combination of
the regions for r and q since their ground atoms have occurrences of constants
appearing in all three concepts.

The induction algorithm proposed is guided by kinds of linkage patterns (sec-
tions 3.1 and 3.2) and using only those in which there is an inductive momentum
(section 3.3). The explanation is that positive examples bring the ground expres-
sions ”close” to the hypothesis to be generated, while the negative ones pull apart
those which are likely to generate inconsistent hypothesis.

3.1 Linear Linkage Patterns

One form of the Amao operation for performing inductive learning with target
predicate p/n is:

consider induction on p(X1,...,Xn) knowing p(t1,...,tn).

That is, p/n is not in the BK and Amao will attempt to find a hypothesis H
such that the positive example(s) p(t1,...,tn) can be deduced from BK ∪H.
In what follows, the symbol representation will be used to mean the Shared
NeMuS code of each logical element and recall that β maps code symbols to
their bindings.

3 Amao is the name of a deity that taught people of Camanaos tribe, who lived on
the margins of the Negro River in the Brazilian part of the Amazon rainforest, the
process of making mandioca powder and beiju biscuit for their diet.



The BK is that used in Example 1. Suppose that the target predicate is
motherInLaw/2, with positive knowledge motherInLaw(pam,bob) then when
Amao is asked to generate hypotheses with

consider induction on motherInLaw(X,Y) knowing motherInLaw(pam,bob).

amongst the successful hypotheses should be:

motherInLaw(X,Y )← mother(X,Z) ∧ wife(Z, Y )

Parsing the positive example against the Shared NeMuS representation of
the BK gives that in the constant region pam has code 1 and bob has code 3.
From the constant region of the subject space the vectors of bindings β(1) and
β(3) are found:

β(1) = [(1, 1, 1)] : in the first predicate, its first instance, as first attribute
β(3) = [(2, 1, 2)] : in the second predicate, its first instance, as second attribute

For each element of the vector of bindings, β(i), the vector of attributes of
the predicate in which it occurs is found, written xa(β(i)j), where j is an index.
Here,

xa(β(1)1) = [(0, 1, 1, 1), (0, 2, 1, 2)] and xa(β(3)1) = [(0, 2, 2, 1), (0, 3, 1, 2)]

that is, mother(pam, ann) and wife(ann, bob).

The intersection between xa(β(pam)1) and xa(β(bob)1) is non-empty since
ann (code 2) occurs in both. Hence predicate codes 1 (mother) and 2 (wife) are
used in the hypothesis. These are ground atoms from the HB of Example 1, and
from them a new clause is built with head (positive) literal as the target anti-
unified, and the negative literals are those found above. Inverse unification will
incrementally build anti-substitution θ−1 at each step by adding literals to the
body with constants substituted by variables X and Y from the targeted head. As
X appears as the first attribute of the first predicate (mother), and Y as the second
attribute of the second predicate (wife), then the linkage term shall be Z 0. Call
Z 0 the hook between both literals and the final θ−1 is {pam/X,bob/Y,ann/Z 0}.
The terms which are not the hook term are called attribute-mates. Thus the
hypothesis is the following clause in Amao notation:

motherInLaw(X,Y); ~mother(X,Z 0); ~wife(Z 0,Y)

This rule is added to the KB and its Shared NeMuS is updated accordingly.

In general this hook chain can be longer and involve more linkage predicates.
Depending on the position where the linkage is formed from one to another there
may be different sorts of linkage pattern. Besides, there can be intermediate
predicates that should not be part of the hypothesis since they may deduce
negative examples. Consider the following example, and this time for the sake of
readability the space information will be suppressed from the bindings and the
attribute position from xa.



Example 2. Consider the following BK.
1. parent(pam,bob).
2. parent(tom,bob).
3. parent(tom,liz).
4. parent(bob,ann).
5. parent(bob,pat).

6. parent(pat,jim).
7. parent(ann,eve).
1. male(tom).
2. male(bob).
3. male(jim).

1. female(pam).
2. female(liz).
3. female(ann).
4. female(pat).
5. female(eve).

Codes for the logical elements in the order they are read or scanned are:

parent male female pam bob tom liz ann pat jim eve
1 2 3 1 2 3 4 5 6 7 8

The induction Amao is requested to perform is

consider induction on hasDaughter(X)

knowing hasDaughter(ann) ~hasDaughter(pat).

First find the bindings associated with the positive and negative examples.

+β(ann) = [(1, 4, 2), (1, 7, 1), (3, 3, 1)] and − β(pat) = [(1, 5, 2), (1, 6, 1), (3, 4, 1)]

nc(β(ann)1) = nc(β(pat)1) = 1 and their positions are the same in the
predicate attributes, given by na(β(ann)1) = na(β(pat)1) = 2. As both appear
along with the same constant bob (2).

xa(β(ann)1) = [(0, 2, 3), (0, 5, 1)] and xa(β(pat)1) = [(0, 2, 4), (0, 6, 1)]

This path will give hypotheses which make hasDaughter(pat) deducible, which
is not desirable since hasDaughter(pat)∈ e−. Call this an inconsistent path,
and the instance is dropped and another selected.

nc(β(ann)2) = nc(β(pat)2) = 1 and na(β(ann)2) = na(β(pat)2) = 1. This
time their attribute-mates are different, eve (8) for ann and jim (7) for pat

xa(β(ann)2) = [(0, 5, 2), (0, 8, 1)] and xa(β(pat)2) = [(0, 6, 2), (0, 7, 1)].

This splits the path into two branches and it cannot be said, at this stage, if
both will lead to atomic sentences belonging to the Herbrand Base, thus de-
ducible. Call this a plausible path. From this point the first literal for the body
of the hypothesis can be considered as a generalization of parent(ann, eve),
i.e. parent(X, Z0) (where {ann/X, eve/Z0} is the inverse or anti-unification of
terms) has to be confirmed by pruning away any possible predicate found in the
bindings of jim onwards.

+β(eve) = [(1, 7, 2), (3, 5, 1)] and − β(jim) = [(1, 6, 2), (2, 3, 1)]

Their first bindings fail in the same inconsistent path as in the case of ann
and pat, and so they must be dropped. However, their occurrences happen at
different predicates as shown by

nc(β(eve)2) = 3 (for female) nc(β(jim)2) = 2 (for male)



This means that the path has reached a state of positive path only, meaning
that predicate 2 (male) can be dropped and female(eve) ends the search for
this branch. Add to the body the general formula female(Z0). The search for a
hypothesis might stop here and Amao would learn

hasDaughter(X)← parent(X,Z0) ∧ female(Z0)

This hypothesis meets the desired definition. If search is continued, further hy-
potheses might be found such as

hasDaughter(X)← parent(X,Z0) ∧ female(Z0) ∧ female(X)

which is also consistent with BK, e+ and e−.

Algorithm 1 LinkagePattern(pk, pk1 are T-Nodes )

1: if nc(pk) = nc(pk1) then . possible recursive pattern
2: if xa(pk) ∩ xa(pk1) 6= ∅ then
3: if na(pk) < na(pk1) then . (position of ak is less than position of ak1)
4: return linear and recursive

5: else if na(pk) = na(pk1) then
6: return sink hook

7: else
8: return side hook pattern

9: else
10: if na(pk) < na(pk1) then . (position of ak is less than position of ak1)
11: return linear or recursive

12: else if na(pk) = na(pk1) then
13: return deep sink hook

14: else
15: return long side hook

16: else
17: if xa(pk) ∩ xa(pk1) = ∅ then
18: return unknown hook

19: else
20: return short linear hook

3.2 Recursive Linkage Pattern

Suppose Amao is asked to generate hypotheses with ancestor(X,Y) with posi-
tive background knowledge ancestor(pam,jim).

consider induction on ancestor(X,Y) knowing ancestor(pam,jim).

Although there is a long linear linkage from pam until jim, the successful expected
hypotheses should be recursive having ∼ parent(X, Y) as base. Amao generates



these as learned hypotheses by following the same steps as for linear linkage,
except that the first pair of pk and pk1 from β(ak) and β(ak1) is checked for
equality. In other words, if nc(pk) 6= nc(pk1), then the linkage pattern is linear
and proceed as above. Otherwise it is possible that there is a recursive pattern.
Algorithm 1 diagnoses which linkage pattern to apply (including some not dis-
cussed here as they are intended to be used within a neural network learning
extension of the current method for large background knowledge). In Algorithm 1
na(pk) and na(pk1) are the attribute positions for ak and ak1, respectively.

3.3 Inductive Momentum

The definition of ILP and all implementations use negative examples e− more
as a testing case to check whether a generated hypothesis H plus BK will entail
e−. If so, then the cause of the undesired deduction is detected, fixed and a new
hypothesis generated. The approach in this work is different: negative example
can be used to prune away candidates to generalized body literals if they have
been reached from the bindings of terms from e− (call them negative terms).

The inductive momentum between two T-Nodes a+ of x+
a and a− of x−

a

given partial θ−1 is given by Algorithm 2.

Algorithm 2 InductiveMomentum(x+
a ,a+,x−

a ,a−)

1: if no attribute of x+
a has an anti-substitution in θ−1 then

2: return useless path.

3: if nc(a
+) = nc(a

−) then
4: if na(a+) = na(a−) then
5: if both attribute-mates a+ of x+

a and a− of x−
a are equal then

6: return inconsistent path

7: else
8: return plausible path

9: else
10: plausible path

11: return positive path only

4 The Inductive Learning Algorithm

The induction algorithm presented in Algorithm 3 works as a search guided
by the linkage pattern (Algorithm 1) and inductive momentum (Algorithm 2).
Algorithm 3 is given a shared NeMuS N , a target P with code p/n, and coded
positive and negative examples e+ and e− with their respective coded terms
being a+k (possibly a+k1), a−k (possibly a−k1) respectively.

Note that step 8 guarantees that ground atoms common to the e+ and e−

derivation chain are left out of the partial clause hypothesis building process.



Algorithm 3 InductiveLearn(N ,pk, pk1 are T-Nodes )

1: θT ← θ−1(ak, ak1)
2: β+

k ← β(a+k ) (and β+
k1 ← β(a+k1) if exists a+k1) from N

3: β−
k ← β(a−k ) (and β−

k1 ← β(a−k1) if exists a−k1) from N
4: while βk 6= ∅ do
5: Hp ← θTP
6: select p+k (p+k1) p−k (p−k1) from β+

k (β+
k1) and β−

k (β−
k1)

7: if There exists a useful LinkagePattern(p+k , p+k1) then
8: if InductiveMomentum(xa(nc(p

+
k )), na(p+k )), xa(nc(p

−
k )), na(p−k )) then

9: if linkage is linear and recursive then
10: θb ← θ−1(xa(nc(p

+
k ))) ∪ clone(θT )

11: Hb ← θb(clone(Hp)∪ ∼ pk)
12: θr ← θ−1(xa(nc(p

+
k1))) ∪ θT

13: Hr ← θr(clone(Hp)∪ ∼ pk1)
14: else
15: θ1 ← θ−1(clone(θT ), xa(nc(p

+
k )))

16: θ2 ← θ−1(θ1, xa(nc(p
+
k1)))

17: Hp ← θ2(clone(Hp)∪ ∼ pk∪ ∼ pk1)

18: if θ1 = θ2 then
19: save hypotheses generated
20: update βs with bindings from attribute-mates(linkage terms).

This avoids inconsistency by not allowing the generation of hypotheses that
would satisfy e− along with BK.

Consider again the example with ancestor/2 to give an intuitive idea of
how negative examples are used as an inductive momentum. Everything else is
left out of the hypothesis since it will not be part of the HB that satisfies the
positive examples e+ plus BK and hypothesis. The process builds the hypothesis
by selecting from the intersection those that meet one of the linkage patterns,
and are not eliminated as a result of an inductive momentum.

>> consider induction on ancestor(X,Y) knowing ancestor(pam,jim).

--> Consider using these hypotheses...

ancestor(X,Y); ~parent(X,Y).

ancestor(X,Y); ~parent(X,Z0); ~ancestor(Z0,Y).

5 Related Work

Inductive logic programming has a large literature, from its antecedents in induc-
tive generalization [14], through work on search strategies, the logical framework
that the learning sits in, as well as the building of systems and application of
these to specific problems. Inductive learning continues to be of interest in a
wide range of contexts and applications as recently surveyed in [5].

Of particular relevance is the work in [4] that investigates path based algo-
rithms to generate relationships and [15] that uses inductive logic programming



concepts in an early instance of theory repair (that is, revising a theory that is
incorrect so that the counter-examples are no longer such). Additionally [6], that
investigates variations on the standard anti-unification algorithm and how these
impact on the efficiency of hypothesis search, is of interest in the current con-
text. More recently, in [1] boolean constraints are used to describe undesirable
areas of the hypothesis search space and solving these to prune the search space
achieves significant speed ups over older inductive logic programming systems
on a range of examples, whilst retaining accuracy.

The higher-order approach taken in [11, 12] uses a meta-interpreter with it-
erative deepening to build Metagol. Metagol has had success on a range of ex-
amples, including learning a subclass of context-free grammars from examples
and inferring relationships in sports data (whilst also uncovering an error in the
data representation). This includes predicate invention, a topic that these papers
suggest has not been paid due attention in inductive learning.

6 Discussion and Future Work

This paper has shown how the Amao Shared NeMuS data structure can be used
to build an inductive logic programming system which has been successfully
applied on some small trial examples.

The results on inductive learning in Amao show that using its shared struc-
ture leads to reliable hypothesis generation in the sense that the minimally cor-
rect ones are generated. However, it still generates additional hypothesis, log-
ically sound and correct with respect to the Herbrand base derivation. Most
important is the size of the set of hypotheses generated which is small in com-
parison with the literature, e.g. [3].

Future work will focus on two areas. First, the power of the shared structure
to allow a fast implementation of inductive inference. Second, the weights incor-
porated in the Shared NeMuS structure (not used in the current paper) will be
used to play an important role in providing heuristics. In [9] it is shown how these
weights can be updated in a manner inspired by self-organising maps [7]. The
propagation across the network of nodes in the structure allows the weights to
capture patterns of refutation. It should be possible to capture negative examples
in inductive logic programming in the network in this way, guiding search away
from these unfruitful regions to fine tune to a small set of generated hypotheses.
Alongside improved hypothesis search the use of the weighted structure to drive
predicate invention – to add to the knowledge base additional inferred predicates
contained in neither it nor the target predicate – will be investigated.
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Abstract. Deep Reinforcement Learning (DRL) has had several breakthroughs, 

from helicopter controlling and Atari games to the Alpha-Go success. Despite 

their success, DRL still lacks several important features of human intelligence, 

such as transfer learning, planning and interpretability. We compare two DRL 

approaches at learning and generalization: Deep Q-Networks and Deep Symbolic 

Reinforcement Learning. We implement simplified versions of these algorithms 

and propose two simple problems. Results indicate that although the symbolic 

approach is promising at generalizing and faster learning in one of the problems, 

it can fail systematically in the other, very similar problem. Keywords: Deep 

Reinforcement Learning, Deep Q-Networks, Neural-Symbolic Integration. 

1 Introduction 

The combination of classical Reinforcement Learning with Deep Neural Networks 

achieved human level capabilities at solving some difficult problems, especially in 

games with Deep Q-Networks (DQNs) [3]. There is no doubt that Deep Reinforcement 

Learning (DRL) has offered new perspectives for the areas of automation and AI. But 

why are these methods so successful? And why are they still unable to solve many 

problems that seem so simple for humans? Despite their success, DRL has several 

drawbacks. First, they need large training sets and hence learn slowly. Second, they are 

very task specific - a trained network that performs well on one task often performs 

very poorly on another, even very similar task. Third, they are difficult to extract a 

human-comprehensible chain of reasons for the action choices that the system makes. 

Some authors have been trying to solve some of the above shortcomings by adding 

prior knowledge to the system, using model-based architectures and other AI concepts 

[2]. One claims to have designed an architecture that solves at once all these shortcom-

ings by combining neural-network learning with aspects of symbolic AI, called Deep 

Symbolic Reinforcement Learning (DSRL) [1]. In this paper, in an attempt to under-

stand better the advantages of a symbolic approach to Reinforcement Learning, we im-

plement and compare two simplified versions of DQN and DSRL at learning a simple 

video game policy. 

mailto:aimorerrd@hotmail.com


2 

2 The Video Game  

The Deep Q-Network (DQN) was reduced to a simple Q-Learning algorithm by remov-

ing its convolutional and function approximation layers. These layers do not seem to 

play a major role in how an agent makes its decisions. They basically reduce the di-

mensionality of the states. In the Deep Symbolic Reinforcement Learning (DSRL), we 

ignored the first low-level extraction part. In our implementation, we skip this first part 

by sending the location and type of each object directly to the agent. In addition, only 

a spatial representation is considered, since there is no complex dynamics relating to 

time in the game. The simplified versions of DQN and DSRL were implemented in 

Python 3.5. 

Fig. 1 shows three initial configurations of the proposed game. The star-shaped ob-

ject is the Agent, the negative sign denotes a Trap, and the positive sign is the Goal. 

The agent can move up, left, right and down, and it stays at the same place when it tries 

to move into the wall. The reward is increased by 1 and decreased by 10 whenever the 

Agent’s position is the same as the Goal 

and the Trap, respectively. The game only 

restarts if the Agent’s position is the Goal. 

The environment is fully-observable, se-

quential, static, discrete, unknown, infinite, 

stationary and deterministic. Two toy ex-

amples are proposed to evaluate how DQN 

and DSRL apply their learned knowledge in a new, similar situation, namely, training 

in configuration 1 and testing in 2 (c.f. Fig. 1), and training in 2 and testing in 3. 

3 Results and Discussion 

Fig. 2 shows that both algorithms (DQN and DSRL) learn well during the training 

phase, but in the test phase, while DQN has a behavior similar to random, DSRL always 

falls into the Trap before reaching the Goal. This shows that, while DQN could not 

learn from conf. 1 what to do in 

conf. 2; and DSRL learned some-

thing completely wrong for conf. 2 

(always move to the right). It is as 

if any prior knowledge in DSRL 

had to be undefeasible, which is an 

unrealistic constraint. DQN, by 

contrast, had never seen the states 

in the test case during training; 

thus, it assumed a random policy. 

The reason why DSRL has very 

low reward is because the Goal’s 

location did not change from train-

ing to test. Thus, our DSRL Agent 
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Fig. 1. Three initial game configurations 
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assumed that the best action should remain the same (move right). The position of the 

Trap did not have any influence in the Agent’s decision because the algorithm treats 

different types of objects independently. In other words, the DSRL Agent does not 

know what rewards to expect from a Trap in a new location. 

In the second example (trained in conf. 2 and tested in 3), the situation is quite dif-

ferent, as Fig. 3 shows. DSRL 

learns how to make the right deci-

sion, and thus has good perfor-

mance during testing. DQN flat 

lines as a result of not knowing the 

states in the test phase. It is interest-

ing noting that DSRL avoided the 

Trap during testing because it has 

learned how to translate from conf. 

2 to 3 (but not how to reflect from 

conf. 1 to 2 (c.f. Fig. 2), or to rotate 

a configuration, which should pro-

duce similar results as Fig. 2 for ob-

vious reasons). Such an ability to 

generalize to new situations is very 

important, as it allows an agent to learn from similar states without having to experience 

them all. In the case of DSRL, generalizations bring faster learning, but seem limited 

to translations of configurations. 

4 Conclusion 

We have compared two model-free RL approaches, DRL and DSRL, on their general-

ization capacity using two toy examples. Both have limitations at learning “the rules of 

the game” for succeeding in different configurations. One key finding is that transform-

ing pixels into symbols can become a channel not only for reducing the state-space, but 

to enable rules between objects to be created. These rules offer a way of generalizing 

states, and could guide an agent during exploration. Assisted by high level rules, an 

agent should learn faster by exploring its environment more efficiently. Thus, as future 

work, we shall consider the combination of model-free and model-based approaches 

with symbolic rules being used for faster and hopefully more effective learning. 
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One of the key challenges of extracting rules from neural networks is accommo-
dation of the inherent flexibility of knowledge representation in neural networks
to more rigid rule based systems. Neural networks are often seen as having ‘soft
constraints’ as opposed to the ‘hard constraints’ of rule based systems. This dis-
tinction has been identified as one of the key differences between the connection-
ist approach and more traditional symbolic AI [1]. For deterministic networks,
the distinction becomes somewhat fuzzy as every input/output relationship of a
network can be encoded in a set of propositional rules with arbitrary precision,
however, representing a neural network this way will be at the very least incom-
prehensible and in most cases intractable. Thus the issue of flexibility is tied to
the issue of compactness of representation. For probabilistic networks, the issue
of flexibility becomes even more of a challenge. Here we go over results showing
that a previous rule extraction method applied to Restricted Boltzmann ma-
chines(RBMs) [5] can be improved by considering more compact rules called M
of N rules. We also consider an example highlighting the advantage that these
rules have in terms of minimizing the incidents of ‘false negatives’ over tradi-
tional conjunctive rules. Finally we look at the notion of ‘confidence values’,
numeric values we associate with a rule meant to represent our degree of belief
in the rule, and show that a more refined notion of confidence may be helpful
when considering extracted rules from RBMs and other probabilistic networks.

Tran and Garcez developed a rule extraction algorithm for RBMs (and DBNs
built from RBMs) which associates confidence values with extracted rules by
looking at the average weight of the literals in the rule [2]. The extraction al-
gorithm works by starting with the conjunction of every literal in the rule and
iteratively updating the confidence value and pruning literals with small enough
weights until equilibrium is achieved. The extracted rules are then composed
in a deep belief network along with an inference rule in order to calculate con-
fidence values for the output given a (partial) set of confidence values for the
input. When looking at RBMs in isolation, the extracted rules can be thought
of as biconditionals, however, the following example shows that when looking at
RBMs a high confidence value does not necessarily correspond to a high prob-
ability of the rule being true. First, when we say that an extracted rule has a
certain probability in the network we mean that, given that the visible units
are uniformly distributed (if the visible distribution is defined by the network
it can be shown that local rule extraction preserving the probabilities is impos-



sible assuming some basic conditions on the network), the rule has a certain
probability of being true in the distribution of the network. For example, if a
network has a probability distribution P , for two hidden units in a network,
h1 and h2, h1 ∨ h2 is given a probability P (h1) + P (h2). Given a biconditional
h↔ x1, ..., xk,¬xk+1...¬xn, where each xi represents a visible unit, we will con-
sider the probability of the biconditional being true in an RBM. For brevity we
will denote the antecedent of the biconditional as ANT , the probability of this
biconditional in an RBM is then P (h = 1, ANT ) + P (h = 0,¬ANT ) Where
the distribution on the set of literals in the antecedent is uniform (since they
represent visible units). We will consider an example of a rule extracted using
the algorithm mentioned above to show that the associated confidence doesn’t
reflect the probability of the biconditional in the network. Define a network with
a single hidden neuron with k identical weights W and bias 0, the antecedent
of the extracted rule is the conjunction of all the literals and the confidence is
W . This means that the antecedent is satisfied only when all k literals are sat-
isfied. Using some algebra, the probability of the biconditional being true in the
network can be written as

P (h = 1|ANT )P (ANT ) +

k−1∑
i=0

(
k

i

)
(1− P (h = 1|ANT i))P (ANT i)

Where P (h = 1|ANT ) is the probability of the hidden neuron being on when
the antecedent is satisfied and P (h = 1|ANT i) is the probability of the hidden
neuron being on when exactly i literals of the rule are satisfied, since all the
weights are the same this does not depend on which specific literals are not
satisfied. Furthermore we are assuming that this visible units are taken from a
uniform distribution so we have P (ANT ) = P (ANT i) = 1

2k
. This gives us

1

2k

(
σ(Wk) +

k−1∑
i=1

(
k − 1

i

)
(1− σ(iW ))

)

Since W and k are arbitrary we can take them to be as large as possible, in
which case the limit of the right term goes to 1 − σ(0) = 0.5 and the left hand
term goes to 1 so as k →∞ the whole thing goes to 0. This shows we can extract
rules with arbitrarily high confidence but arbitrarily low probability.

The issue with this example is that the extracted rule give many false nega-
tives. There are many cases where the rule should be giving an output of 1 but
is failing to since not every literal is satisfied. Rather than requiring every literal
in the antecedent be satisfied in order to predict 1 we really only need one of
them. It’s difficult to extract a single conjunctive rule which can accurately cap-
ture the behaviour of a probabilistic network and by extracting many different
rules you lose compactness. In order to find a compact way to more faithfully
capture the behaviour of an RBM we relax the condition that every literal in the
antecedent needs to be satisfied. This give us the so called M of N rules. In an



M of N rule the antecedent is satisfied if only M of the N literals are. In the pre-
vious example the correct rule would be 1 of the set of literals. By first applying
the rule extraction algorithm and selecting M by looking for the minimum value
of M for which M · c (where c is the confidence given to the rule) is greater than
a predetermined threshold (in our case the minimum input to the hidden node)
we can convert the purely conjunctive rules into M of N ones. If we cannot find
an appropriate M we add new literals until there either is an appropriate M or
we run out of literals. The rules produced by this algorithm perform much better
than the purely conjunctive rules when tested with a variety of small datasets [6].

Assigning values to logical sentences to measure degrees of belief has been done
before. The most relevant examples for us are penalty logic [4] and Markov
logic networks [3], in both cases ‘weights’ were given to logical sentences which
were then translated into weights of a network (Hopfield networks and Markov
random fields respectively). A similar philosophy was used to define confidence
values for deep belief networks by using the weights of the RBM in the previous
algorithm. The above example shows that the extracted confidence really does
not accurately reflect the underlying probability of structure of the constituent
RBMs and that the extracted rules are perhaps better considered in the feed
forward context rather rather than biconditionals. Extending this algorithm to
M of N relieves some of the problems by loosening the requirements for the
rule to be satisfied but it remains to be seen whether the confidence values ex-
tracted with M of N rules more accurately reflect the probability structure of
the RBM. One possible avenue of research is, rather than look simply at the
weights attached to the literals to derive confidence, look at both the minimum
input to a node when the rule is satisfied and the maximum input to the node
when the rule is not satisfied. Ultimately the M of N rule is a promising way of
representing knowledge in a neural network with more possibilities to imbue it
with more flexibility by exploring various notions of confidence values
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Abstract. In recent years a number of large-scale triple-oriented knowl-
edge graphs have been generated. They are being used in research and in
applications to support search, text understanding and question answer-
ing. Knowledge graphs pose new challenges for machine learning, and
research groups have developed novel statistical models that can be used
to compress knowledge graphs, to derive implicit facts, and to detect
errors in the knowledge graph. In this paper we decribe the concept of
triple-oriented knowledge graphs and corresponding learning approaches.
We also discuss episodic knowledge graphs which are able to represent
temporal data; learning with episodic data can be the basis for decision
support systems, e.g. in a clinical context. Finally we discuss how knowl-
edge graphs can support perception, by mapping subsymbolic sensory
inputs, such as images, to semantic triples. A particular feature of our
approach would be that perception, episodic memory and semantic mem-
ory are highly interconnected and that, in a cognitive interpretation, all
rely on the same brain structures.

1 Semantic Knowledge Graphs

A technical realization of a semantic memory is a knowledge graph (KG) which
is a triple-oriented knowledge representation: A labelled link implies a (subject,
predicate, object) statement where subject and object are entities that are rep-
resented as the nodes in the graph and where the predicate labels the link from
subject to object. Large KGs have been developed that support search, text un-
derstanding and question answering [8]. A KG can be represented as a tensor
which maps indices to true or false

s, p, o 7→ Q

with Q ∈ {T, F}, and where s ∈ 1, . . . , N and o ∈ 1, . . . , N are indices for the N
entities used as subject and object, and where p ∈ 1, . . . , R is the index for the
predicate.

A statistical model for a KG can be obtained by a tensor model of the form

s, p, o 7→ ae(s),ap,ae(o) 7→ P. (1)

Here e(s) and e(o) are the entities associated with subject and object, respec-
tively. The indices are first mapped to their latent representations ae(s),ap,ae(o)



which are then mapped to a probability P ∈ [0, 1]. P ((s, p, o) = T|ae(s),ap,ae(o))
represents the Bernoulli probability that the triple (s, p, o) is true, and, when
normalized across all triples, P (s, p, o|ae(s),ap,ae(o)) stands for the categorical
probability that the triple (s, p, o) is selected as an answer in a query process. A
number of mathematical models have been developed for the mapping in Equa-
tion 1 (see [7]). A representative example is the RESCAL model [6], which is a
constraint Tucker2 tensor model.

2 Episodic Knowledge Graphs

Whereas a semantic KG model reflects the state of the world, e.g, of a clinic and
its patients, observations and actions describe factual knowledge about discrete
events. Generalizing the semantic KG, an episodic KG can be represented as a
4-way tensor with time index t as the map

s, p, o, t 7→ Q.

A statistical model for a KG can be obtained by a 4-way tensor model of the
form

s, p, o, t 7→ ae(s),ap,ae(o),at 7→ P (2)

where at is the latent representation for time index t.
The basis for the tight link between different memory functions is the “unique

representation hypothesis”, which states that an entity has a unique latent rep-
resentation in a technical application, but maybe also in the human brain [9].

As discussed in [11, 5] both the episodic KG and the semantic KG might rely
on the same representations, i.e., it was proposed that the semantic KG can be
derived from the episodic KG by a marginalization operation. Thus an episodic
fact might represent that “Jack, wasDiagnosed, Diabetes, on Jan 15”, the derived
semantic fact might be “Jack, hasDisease, Diabetes”. In [3, 4] medical decision
systems are described that combine semantic and episodic tensor representations
of data with recurrent neural network predictive models.

3 Perception

The tensor models permit generalization, i.e., the prediction of the probability of
triples which were not known to be true in the data. This is especially important
in perception, which we propose can be thought off as the mapping of subsym-
bolic sensory inputs to a semantic description in the form of a set of triples,
describing and explaining the sensory inputs. These triples then becomes part
of episodic memory.

Let ut,1, . . . , ut,c, . . . , ut,C be the content of the sensory buffers at time t. We
propose that this sensory input can predict the latent representation for time in
the form of a map

ut,1, . . . , ut,c, . . . , ut,C 7→ at.

2



This map at(ut,w) might be modelled by a deep neural network with weights
w. Perceptual decoding then produces likely triples from the probability distri-
bution (generalized nonlinear model) using

P (s, p, o;ae(s),ap,ae(o),at(ut,w)).

An episodic memory would simply store at, and memorizing simply means the
restoring of a past at, which then can be decoded as described [9, 10]. A semantic
memory uses the marginalizing approach describes in Section 2.

As another approach, there is the option to use P (s, p, o) or P (s, p, o, t) as a
semantic prior in sensory decoding. This was the basis for approaches to extract
triples from Web sources [2] and for the extraction of triples from images [1].

References

[1] Stephan Baier, Yunpu Ma, and Volker Tresp. Improving visual relationship de-
tection using semantic modeling of scene descriptions. In ISWC, 2017.

[2] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Mur-
phy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge Vault: A
Web-scale Approach to Probabilistic Knowledge Fusion. In KDD, 2014.
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1 Introduction

The categorization process of information from pure data or learned in unsuper-
vised artificial neural networks is still manual, especially in the labeling phase.
Such a process is fundamental to knowledge representation [6], especially for
symbol-based systems like logic, natural language processing and textual infor-
mation retrieval. Unfortunately, applying categorization theory in large volumes
of data does not lead to good results mainly because there is no generic and
systematic way of categorizing such data processed by artificial neural networks
and joining investigated conceptual structures.

Connectionist approaches are capable of extracting information from arti-
ficial neural networks, but categorizing them as symbolic knowledge have been
little explored. The obstacle lies on the difficulty to find logical justification from
response patterns of these networks [2]. This gets worse when considering induc-
tive learning from dynamic data which is very important to Cognitive Sciences
that considers categorization as a mental operation of classifying objects, actions
and events [1].

We shall address the discoveries of our on-going investigation on the problem
of inductively learning (IL) from dynamic data by applying a novel framework for
neural-symbolic representation and reasoning called share Neural Multi-Space
(NeMuS) used in the Amao system[4]. Instead of woking like traditional ap-
proaches for ILP, e.g. [5], Amao uses a shared NeMuS of a give background
knowledge (BK) and uses inverse unification as the generalization mechanism
of a set of logically connected expressions from the Herbrand Base (HB) of BK
that defines positive examples.

2 Discussion on Inductive Learning about Dynamic Data

Our scenario on the realm of Driving offences considering a small portion of it
in a usual traffic light. Consider four cars c1, c2, c3 and c4, and a traffic light
tl1 on a street s1, as depicted in Figure 1.



Fig. 1. BK representation of example.

The logical entities considered are based on dynamic nature of the data[3],
like a historical database about a traffic light. No external action is assumed to
influence this scenario and the passage of time is based on actions on it.

car(c1).
car(c2).
car(c3).
car(c4).
street(s1).
traffic light(tl1).

is at(c1,s1).
is at(c2,s1).
is at(c3,s1).
is at(c4,s1).
is at(tl1,s1).

is direction(c1,r).
is direction(c2,r).
is direction(c3,r).
is direction(c4,r).
is direction(s1,r).

There are four moments of interest.M1: All cars are moving; M2: c1 stopped
on street; M3: tl1 signals warning, so c2 has stopped; and M4: tl1 stops
blinking yellow and goes to stop sign (red), then c3 has stopped.

M1

go(tl1,g0).

move(c1,t0).

move(c2,t0).

move(c3,t0).

move(c4,t0).

M2

~move(c1,t1).

move(c2,t1).

move(c3,t1).

move(c4,t1).

M3

~move(c1,t2).

~move(c2,t2).

move(c3,t2).

move(c4,t2).

M4
~warning(tl1,w1).

~go(tl1,g1).

~move(c1,t3).

~move(c2,t3).

~move(c3,t3).

move(c4,t3)..

during(t0,t2,g0). during(t2,t2,w0).

during(t3,t3,g1). during(t3,t3,w1).

Change through time of an entity (car or traffic light) is represented by a
change from positive to negative literal of move, warning and go. The goal is to
identify which cars have committed a traffic light or driving offense. Traffic regu-
lations would point that c1 and c4 violated such laws. c1 is blocking (it stopped)
traffic on s1 while tl1 indicates to go, and c4 is moving when tl1 is indicating
to stop. For lack of space, we consider just the target block offence(C) with
positive example block offence(c1) and negative ~block offence(c2), and
the target driving offence(C) with positive example driving offence(c4)

and negative ~driving offence(c3). The following (unsual long) hypothesis
should be generated.
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block_offence(C); car(C); traffic_light(TL); is_at(C,S); is_at(TL,S);

move(C,TA); go(TL,GA); ~move(C,TB); warning(TL,W1);

during(TA,TB,GA); during(TX,TY,W1).

driving_offence(C); car(C); traffic_light(TL); is_at(C,S); is_at(TL,S);

move(C,TA); go(TL,GA); move(C,TB); ~go(TL,GB);

during(TA,TX,GA); during(TY,TB,GB).

Shared NeMuS codes allow us to know that (1) the car and traffic light
are on the same street, and (2) the car has the same direction of the street.
Predicate code 2 can be ignored inasmuch as it is unnecessary information,
because it is a rule that involves carriage movement and obedience to traffic light.
Amao gets the bindings relations (occurrences) the given objects as positive and
negative examples. As c1, c2, c3, and c4 are cars they belong to the same region
of predicate codes. is at() relating to s1, both have is direction() with r

(right), and have a single object different that also relates through is at ()

with s1, the tl1. The difference between the positive and negative examples
lies in their action predicates, in which c1 performs an action before any change
occurs in t1. We, not in Amao a automatic mechanism, also noticed that the
predicate is direction () and r do not relate in any way to another object or
to action predicates. Thus, we can ignore this information in the construction
of a hypothesis. By inverse unification, Amao finds a linkage pattern between
is at(C,S) and is at(TL,S), and thus connecting the car and the traffic light.

3 Concluding Remarks

The example explored here is small, and yet we have a long rule. An example
with more information, such as velocity, position of the car and people on the
street,their relations we will have many ways to find hypotheses. We aim to
overcome this challenge by using shared NeMuS weight to to group the predicates
that form an intermediate concept, an abstraction, so that we can add only the
predicates needed for the rules.

References

1. Cohen, H., Lefebvre, C.: Handbook of categorization in cognitive science. Elsevier
(2005)

2. d’Avila Garcez, A.S., Broda, K., Gabbay, D.: Neural-Symbolic Learning Systems:
Foundations and Applications, Perspectives in Neural Computing. Springer-Verlag
(2002)

3. Gardenfors, P.: Concept learning and non-monotonic reasoning. In: Handbook of
Categorization (2005)

4. Mota, E.d.S., Howe, J., Garcez, A.: In: Besold, T.R., d’Avila Garcez, A., Noble, I.
(eds.) To appear NeSy 2017 Neural-Symbolic Learning and Reasoning (July)

5. Muggleton, S.H.: Inductive Logic Programming. New Generation Computing 8(4),
295–318 (1991)

6. Sowa, J.F., et al.: Knowledge representation: logical, philosophical, and computa-
tional foundations, vol. 13. MIT Press (2000)

3



Category-based Inductive Learning in Shared
NeMuS

Ana Carolina Melik Schramm1, Edjard de Souza Mota1,
Jacob M. Howe2, and Artur S. d’Avila Garcez2

1 Universidade Federal do Amazonas,
Instituto de Computação, Campus Setor Norte

Coroado - Manaus - AM - Brasil CEP: 69080-900
{acms, edjard}@icomp.ufam.edu.br,

2 City, University of London, London, EC1V 0HB, UK
{J.M.Howe,a.garcez}@city.ac.uk

1 Introduction

One of the main objectives of cognitive science is to use abstraction to create
models that represent accurately the cognitive processes that constitute learning,
such as categorisation. Relational knowledge is important in this task, since
through the reasoning processes of induction and analogy over relations that the
mind ”creates” categories (it later estabilishes causal relations between them by
using induction and abduction), and analogies exemplify crucial properties of
relational processing, like structure-consistent mapping[2].

Given the complexity of the task, no model today has accomplished it com-
pletely. The associacionist/connectionist approach represents those processes
through associations between different informations. That is done by using artifi-
cial neural networks. However, it faces a great obstacle: the idea (called proposi-
tional fixation) that neural networks could not represent relational knowledge. A
recent attempt to tackle the symbolic extraction from artificial neural networks
was proposed in [1]

The cognitive agent Amao uses a shared Neural Multi-Space (Shared NeMuS)
of coded first-order expressions to model the various aspects of logical formulae
as separate spaces, with importance vectors of different sizes. Amao [4] uses
inverse unification as the generalization mechanism for learning from a set of
logically connected expressions of the Herbrand Base (HB). Here we present an
experiment to use such learning mechanism to model a simple version of train
set from Michalski’s train problem[3].

2 Shared NeMuS Approach to Train Problem

In Michalski’s train problem, there are 10 trains: 5 eastbound and 5 westbound.
Whether a train is going east or west is determined by its properties. Using these
trains, a simple base has been created, taking into account the size of the train
wagons (short or not) and whether these wagons are closed or not. The number



of wheels, wagon format and other attributes have been ignored in order to make
the base simpler.

All the eastbound trains have at least one wagon which is both short and
closed. That is what determines whether a train is eastbound or westbound. The
idea is to use the shared NeMuS structure to induce the rule eastbound knowing
that t1 (the first train) is going east. Having that information, we can directly
get all predicate instances, called as bindings, which have t1 is an attribute.
They are the following:

train(t1).
car(t1, c1 t1).
car(t1, c2 t1).
car(t1, c3 t1).
car(t1, c4 t1).

short(c1 t1).
closed(c1 t1).

The predicate car links t1 to all its wagons (or carriages), so car(t1, c1 t1)

means that c1 t1 is a wagon that belongs to t1. Taking the first instance of the
predicate car, we now know that t1 has a wagon named c1 t1. Amao, through
its shared NeMuS, accesses c1 t1’s bindings and using a polynomial search, finds
both occurrences of c1 t1 in short and closed, as seen above. This mechanism
is called linkage pattern in Amao’s learning mechanism.

At this point t1 is a train that has c1 t1 as a wagon, and this wagon is not
closed. Amao also has the linkage predicate connecting both c1 t1 and t1. Thus,
a candidate hypothesis generated would look like eastbound(X) ← car(X, Y)

∧ ∼ short(Y) ∧ ∼ closed(Y). However, this may not be the only possible
hypothesis, so the other wagons being carried by t1 need to be considered.

short(c2 t1).
closed(c2 t1.

∼short(c3 t1).
∼closed(c3 t1).

short(c4 t1).
∼closed(c4 t1).

Among the possible hypotheses that may define a train as being eastbound,
we have:

eastbound(X) ← car(X, Y) ∧ ∼short(Y) ∧ ∼closed(Y).
eastbound(X) ← car(X, Y) ∧ short(Y) ∧ closed(Y).

eastbound(X) ← car(X, Y) ∧ short(Y) ∧ ∼closed(Y).

Adding negative examples, we can reduce the number of possible hypotheses.
In this case, the simplest way to do that is to use the 10th train t10 as a negative
example. Using the same method as explained above, the structure can select
all predicates that have t10 as an attribute:

car(t10, c1 t10).
car(t10, c2 t10).

Then, all the predicates that have t10s wagons as attributes:
short(c1 t10).
∼closed(c1 t10).

∼short(c2 t10).
∼closed(c2 t10).

Thus, the hypotheses that definitely do not define a train as being eastbound
are:
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eastbound(X) ← car(X, Y) ∧ short(Y) ∧ ∼closed(Y).
eastbound(X) ← car(X, Y) ∧ ∼short(Y) ∧ ∼closed(Y).

Both hypotheses are among the possible options defined above. Excluding them,
the correct option remains. The target eastbound(X) can be defined by:

eastbound(X) ← car(X, Y) ∧ short(Y) ∧ closed(Y).

Formalizing what was explained above:

1. With the positive example ( t1), get all predicates (bindings) that have t1

as an attribute;
2. Access bindings of attributes linked to t1 using polynomial search (linkage

pattern)
– in this case, the attributes are c1 t1, c2 t1 and c3 t1

3. repeat the first two steps for the negative example ( t10)]
– in this case, the attributes linked to t10 are c1 t10 and c2 t10

4. if there are hypotheses generated by using the positive example that are
repeated in the negative example, they will not be in the list of possible
hypotheses.
– some of the hypotheses generated by using only the positive example

are:
eastbound(X) ← car(X, Y) ∧ ∼short(Y) ∧ ∼closed(Y).
eastbound(X) ← car(X, Y) ∧ short(Y) ∧ closed(Y).

eastbound(X) ← car(X, Y) ∧ short(Y) ∧ ∼closed(Y).
However, using only the negative example, the first and third hypotheses
would also be generated. By using both examples, these two don’t make
it into the list of possible hypotheses, and the correct one, which is
eastbound(X) ← car(X, Y) ∧ short(Y) ∧ closed(Y), remains.

3 Concluding Remarks

The knowledge base created is only a simplification of the original train problem.
As explained before, many attributes such as number of wheels, wagon format,
load shape and roof shape have been ignored. Had they been included, more
hypotheses could have been generated through Amao’s inductive learning mech-
anism over the shared NeMuS. One current limitation is not being able to deal
with predicate invention, that would allow to automatically create categories by
means of abstraction/new predicates.

One possible road to explore is to take advantage of shared NeMuS weights
to integrate a neural network classification method to help identify categories. In
the train set, we know which trains are eastbound, but whatever rule defines the
eastbound category is not known before using Amao to define it. Understanding
what makes a train eastbound or not can help us categorize any train that might
be added to the set in the future.

Another goal we aim to pursue is to make use of weights to implement neural
mechanisms. We expect to envisage more efficient heuristics to guide hypotheses
generation, improving Amao’s learning mechanism.

3



References

1. França, M.V.M., D’Avila Garcez, A.S., Zaverucha, G.: Relational knowledge extrac-
tion from neural networks. In: Proceedings of the 2015th International Conference
on Cognitive Computation: Integrating Neural and Symbolic Approaches - Volume
1583. pp. 146–154. COCO’15, CEUR-WS.org, Aachen, Germany, Germany (2015),
http://dl.acm.org/citation.cfm?id=2996831.2996849

2. Halford, G.S., Wilson, W.H., Phillips, S.: Relational knowledge: the foundation of
higher cognition 14, 597–505 (2010)

3. Larson, J.B., Michalski, R.S.: Inductive Inference of VL Decision Rules 14, 16–20
(1977)

4. Mota, E.d.S., Howe, J., Garcez, A.: In: Besold, T.R., d’Avila Garcez, A., Noble, I.
(eds.) To appear NeSy 2017 Neural-Symbolic Learning and Reasoning (July)

4



Q-SATyrus: Mapping Neuro-symbolic Reasoning into an 
Adiabatic Quantum Computer 

Priscila M. V. Lima1[0000-0002-8515-9904]  

1 Tercio Pacitti Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-916, Brazil 
priscilamvl@gmail.com 

Abstract. Much has been promised about quantum computing accelerators, but 
few actual commercial technologies have been made available so far. The D-
Wave Computers Series constitutes one family of adiabatic quantum computers, 
based on energy minimization techniques that are considered suitable for solv-
ing discrete optimization problems. This work shows a path to explore these 
machines in order to perform neuro-symbolic reasoning, by specifying it a a set 
of pseudo-Boolean constraints and associating their satisfiability to energy 
minimization. Also introduced is the platform Q-SATyrus, a spin-off of the 
original project SATyrus. Q-SATyrus is under development in order to system-
atically address such mappings. 

Keywords: neuro-symbolic reasoning, adiabatic quantum computing, artificial 
symmetric neural networks 

1 Q-SATyrus : Considering Adiabatic Quantum Computing for 
Neuro-symbolic Reasoning 

Based on the adiabatic theorem, adiabatic quantum computing performs some calcula-
tions that some consider being a kind of quantum computing [1]. The Canadian com-
pany D-Wave Systems, founded in 1999, has developed a family of adiabatic com-
puters, the newest one, the D-Wave 2000Q™ system, with 2000 qbits [2][3][4]. 

In D-WAVE systems, there are binary variables, named qubits qi in{0, 1}. Each 
qubit may have an associated weight ai (same as the threshold of Artificial Neural 
Networks [5]) and a pair of qubits  qi and qj have their mutual influence named cou-
pler (same as the binary weight of Artificial Neural Networks [5]) and represented by 
bij [6]. The general specification for the problem solved by a D-WAVE system is 
given by equation (1), which represents the objective function to be minimized. Is is 
also worth noting that the same equation (1) represents an artificial neural network 
with symmetric binary connections [5]. 

 min O(a, b, q) = ∑ ai qj + ∑ bij qj qj (1) 

 
By converting propositional satisfiability into energy minimization [7], some works 
specified limited depth proofs, among them it is possible to cite [8], [9], [10] and [11]. 
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Works [9], [10] and [11] led to the construction of the SATyrus platform other more 
traditional optimization problems as well as some of their combinations were also 
mapped to SATyrus [12], [13], [14], [15], [16]. It should be pointed out that the map-
pings issued by SATyrus do not generate only binary connections energy equations. 
However, it is possible to convert higher-order connections into a set of binary ones 
together with additional units [17]. Q-SATyrus will provide the necessary intermedi-
ate conversion of energy minimization with higher-order connections to the one with 
corresponding global minima with binary connections. Also, although the works on 
binders [18], [19] and [20] were implemented in conventional computing, it is possi-
ble to map their solution to adiabatic computing. 
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