
Joint	Multi-Conference	on	Human-Level	Artificial	Intelligence	HLAI	2016	

	

	

	

	

	

	

	

	

	

Pre-Proceedings	of	the	11th	International	

Workshop	on	Neural-Symbolic	Learning	

and	Reasoning	NeSy’16	
	

	

	

	

	

	

	

	

Tarek	R.	Besold,	Luis	C.	Lamb,	Luciano	Serafini,	Whitney	Tabor		

(eds.)	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

New	York	City,	USA,	16th	&	17th	of	July	2016	

	
	
	
	
We,	as	workshop	organizers,	want	to	thank	the	following	members	of	the	NeSy’16	
program	committee	for	their	time	and	efforts	in	reviewing	the	submissions	to	the	
workshop	and	providing	valuable	feedback	to	accepted	and	rejected	papers	and	
abstracts	alike:	
	

- Antoine	Bordes,	Facebook	AI	Research,	USA	
- Artur	d'Avila	Garcez,	City	University	London,	UK		
- James	Davidson,	Google	Inc.,	USA	
- Robert	Frank,	Yale	University,	USA	
- Ross	Gayler,	Melbourne,	Australia	
- Ramanathan	V.	Guha,	Google	Inc.,	USA	
- Steffen	Hoelldobler,	Technical	University	of	Dresden,	Germany		
- Thomas	Icard,	Stanford	University,	USA	
- Kristian	Kersting,	Technical	University	of	Dortmund,	Germany	
- Kai-Uwe	Kuehnberger,	University	of	Osnabrueck,	Germany		
- Simon	Levy,	Washington	and	Lee	University,	USA	
- Stephen	Muggleton,	Imperial	College	London,	UK	
- Isaac	Noble,	Google	Inc.,	USA	
- Andrea	Passerini,	University	of	Trento,	Italy	
- Christopher	Potts,	Stanford	University,	USA	
- Daniel	L.	Silver,	Acadia	University,	Canada		
- Ron	Sun,	Rensselaer	Polytechnic	Insitute,	USA		
- Jakub	Szymanik,	University	of	Amsterdam,	The	Netherlands		
- Serge	Thill,	University	of	Skovde,	Sweden	
- Michael	Witbrock,	IBM,	USA	
- Frank	van	der	Velde,	University	of	Twente,	The	Netherlands	

	
These	workshop	pre-proceedings	are	available	online	from	the	workshop	webpage	
under	http://www.neural-symbolic.org/NeSy16/.	
	
	
	
Bozen-Bolzano,	10th	of	July	2016	
Tarek	R.	Besold,	Luis	C.	Lamb,	Luciano	Serafini,	and	Whitney	Tabor.1	
	
	
	

																																																								
1	Tarek	R.	Besold	is	a	postdoctoral	researcher	at	the	KRDB	Research	Centre	of	the	Free	University	of	
Bozen-Bolzano,	Italy;	Luis	C.	Lamb	is	Professor	of	Computer	Science	at	UFRGS,	Porto	Alegre,	Brazil;	
Luciano	Serafini	is	the	head	of	the	Data	and	Knowledge	Management	Research	Unit	at	Fondazione	Bruno	
Kessler,	Trento,	Italy;	Whitney	Tabor	is	Associate	Professor	at	the	Department	of	Psychological	Sciences	at	
the	University	of	Connecticut,	USA.	

Contents:	Contributed	Papers	
	
	
	
	
Inducing	Symbolic	Rules	from	Entity	Embeddings	using	Auto-encoders	
(Thomas	Ager,	Ondrej	Kuzelka,	and	Steven	Schockaert)	
	
	
Shared	Multi-Space	Representation	for	Neural-Symbolic	Reasoning	
(Edjard	de	S.	Mota	and	Yan	B.	Diniz)	
	
	
Logic	Tensor	Networks:	Deep	Learning	and	Logical	Reasoning	from	Data	and	Knowledge	
(Luciano	Serafini	and	Artur	d’Avila	Garcez)	
	
	
Learning	sequential	control	in	a	Neural	Blackboard	Architecture	for	in	situ	concept	
reasoning	
(Frank	van	der	Velde)	
	
	
A	Proposal	for	Common	Dataset	in	Neural-Symbolic	Reasoning	Studies	
(Ozgur	Yilmaz,	Artur	d’Avila	Garcez,	and	Daniel	Silver)	
	
	
	
	
	
	
	
Contents:	Contributed	Abstracts	
	
	
	
	
High-Power	Logical	Representation	via	Rulelog,	for	Neural-Symbolic	
(Benjamin	N.	Grosof)	
	
	
Heterotic	Continuous	Time	Real-valued/Boolean-valued	Networks	
(Daniel	R.	Patten	and	Howard	A.	Blair)	

Inducing Symbolic Rules from Entity

Embeddings using Auto-encoders

Thomas Ager, Ondřej Kuželka, Steven Schockaert

School of Computer Science and Informatics, Cardi↵ University
{AgerT,KuzelkaO,SchockaertS1}@cardiff.ac.uk

Abstract. Vector space embeddings can be used as a tool for learning
semantic relationships from unstructured text documents. Among oth-
ers, earlier work has shown how in a vector space of entities (e.g. di↵erent
movies) fine-grained semantic relationships can be identified with direc-
tions (e.g. more violent than). In this paper, we use stacked denoising
auto-encoders to obtain a sequence of entity embeddings that model in-
creasingly abstract relationships. After identifying directions that model
salient properties of entities in each of these vector spaces, we induce
symbolic rules that relate specific properties to more general ones. We
provide illustrative examples to demonstrate the potential of this ap-
proach.

1 Introduction

In this paper, we consider the problem of how we can learn symbolic rules from
unstructured text documents that describe entities of interest, e.g. how we can
learn that thrillers tend to be violent from a collection of movie reviews. Ob-
taining meaningful and interpretable symbolic rules is important in fields like
exploratory data analysis, or explaining classifier decisions, as they can be inter-
preted easily by human users.

A straightforward approach might be to directly learn rules from bag-of-
words representations of documents. However, such an approach would typically
lead to a large number of rules of little interest, e.g. rules pertaining more to
which words are used together rather than capturing capturing meaningful se-
mantic relationships. Our approach instead builds on the method from [6], which
induces an entity embedding from unstructured text documents. Their method
finds directions which correspond to interpretable properties in a vector space,
labelled using adjectives and nouns that appear in the text collection. In partic-
ular, these directions induce a ranking of the entities that reflects how much they
have the corresponding property. For example, in a space of wines, a direction
may be found that corresponds to the property of being “Tannic”, allowing us
to rank wines based on the number of tannins.

In order to obtain symbolic rules, we first derive a series of increasingly
general entity embeddings using auto-encoders (see Section 3). To induce rules
from embeddings, we link properties derived from those embeddings together.

As an example, below is one of the rules we have derived using this method:

IF Emotions AND Journey THEN Adventure (1)

Using a set of symbolic rules that qualitatively describe domain knowledge is a
promising approach to generate supporting explanations. Explanations of classi-
fication decisions can give valuable insight into why a system produces a result.
For example, in fields such as medicine it is important for experts to verify the
predictions of a system and justify its classification decisions [7, 9]. In the domain
of movies, we may have a situation where the synopsis or reviews mention the
words “Emotions” and “Journey”, from which the system could derive that it is
probably an “Adventure” movie and use rule (1) as a supporting explanation.
We note that the ideas presented in this paper may also be directly useful for
explaining predictions of some kinds of deep neural networks.

The rest of the paper explains how we use unsupervised methods to learn
rules such as (1). In Section 2, we recall the method from [6] for identifying
interpretable directions in entity embeddings. Subsequently in Section 3 we detail
how we build on this method using stacked denoising auto-encoders, and how we
induce rules that explain the semantic relationships between the properties that
we discover. In Section 4 we qualitatively examine these properties and rules,
and in Section 5 we place our work in the context of related work. Finally, in
Section 6 we provide our conclusions.

2 Learning Interpretable Directions

In this section, we recall the method from [6] that learns a vector space represen-
tation for the entities of a given domain of interest, such that salient properties
of the domain correspond to directions in the vector space. The method proceeds
in several steps, detailed next.

From bags-of-words to vectors. We use a text collection where each document
describes an entity. For example, if the entities are movies, a collection of movie
reviews. We first learn a vector space of entities using classical multidimensional
scaling (MDS), which takes a dissimilarity matrix as input. MDS is commonly
used in cognitive science to generate semantic spaces from similarity judgements
that are provided by human annotators. It outputs a space where entities are
represented as points and the Euclidean distance between entities reflects the
given dissimilarity matrix as closely as possible. It was empirically found to lead
to representations that are easier to interpret than the more commonly used
singular value decomposition method [5]. To obtain a suitable dissimilarity ma-
trix, we quantify how relevant each term is to an entity using Positive Pointwise
Mutual Information (PPMI). PPMI scores terms highly if they are frequently
associated with an entity but relatively infrequent over the entire text collection.
We create PPMI vectors for each entity using the PPMI values for each word
as the components of its vector, and calculate the dissimilarity between those
vectors using the normalized angular di↵erence. These dissimilarity values are
then used as the input to MDS.

Identifying directions for frequent terms. To discover terms that correspond
to interpretable properties in the MDS space, the nouns and adjectives that
occur in su�ciently many reviews are used as the input to a linear Support
Vector Machine (SVM). The SVM is trained to find the hyperplane that best
separates the entities that contain the term at least once in their associated
textual description. To accommodate class imbalance, we increase the cost of
positive instances such that their weight is inversely proportional to how many
times the term has occurred. To assess the quality of the hyperplane found by the
SVM, we use Cohen’s Kappa score [4] which evaluates how well the hyperplane
separates positive/negative instances while taking class imbalance into account.
We consider terms with a high Kappa score to be labels of properties that
are modelled well by the MDS space. The direction corresponding to a given
term/property is given by the vector perpendicular to the associated hyperplane.
This vector in turn allows us to determine a ranking of the entities, according
to how much they have the property being modelled. This ranking is obtained
by determining the orthogonal projection of each entity on an oriented line with
that direction. It is easy to see that if v is the vector modelling a given property,
then entity e1 is ranked before entity e2 i↵ e1 · v < e2 · v. Another way to
look at this is that entities are ranked according to their signed distance to the
hyperplane.

Identifying saleint properties by clustering directions. It can sometimes be am-
biguous as to what property each term is referring to. For example, it is un-
clear whether “mammoth” refers to the animal or an adjective meaning large.
In this paper, we have chosen the number of clusters equal to the number of
dimensions. To determine the cluster centers, we first select directions whose
associated Kappa score is above some threshold T+. We use the highest scoring
direction as the center of the first cluster and find the most dissimilar direction
to the first cluster’s direction to get the centre of the second cluster. Continu-
ing in this way, we repeatedly select the direction which is most dissimilar to
all previously selected clusters. By doing so, we obtain a collection of cluster
centres that capture a wide variety of di↵erent properties from the space. We
then associate each remaining direction to its most similar cluster centre. In this
step, we consider directions whose associated Kappa score is at least T�, where
typically T� < T+. Finally, we take the average of all directions in a cluster to
be the overall direction for a cluster. The value of T+ should be chosen as large
as possible (given that the terms with the highest Kappa scores are those which
are best represented in the space), while still ensuring that we can avoid choos-
ing cluster centers which are too similar. Choosing the value of T� represents a
trade-o↵. A cluster of terms is often easier to interpret than a single term, which
means that we shouldn’t choose T� to be too high. On the other hand, choosing
T� to be too low would result in poorly modelled terms being added to clusters.
For example, we would not want to term “Bee” to be added to the cluster for
“Emotional”, even though the direction for “Bee” is closest to that cluster.

Note that as each cluster produced by the above procedure is associated
with a direction, it induces a ranking of the entities. This gives us two ways to

disambiguate which properties a term is referring to: the first being examining
which terms it shares its cluster with e.g. we know that “Mammoth” refers to
the adjective because it is shared with “Epic”, “Stupendous”, and “Majestic”,
and the second being examining which entities score highly in the rankings for a
cluster direction e.g. “Monster” defines a ranking in which “Frankenstein” and
“The Wolfman” appear among the top ranked movies.

3 Inducing Rules from Entity Embeddings

In this section, we explain how we obtain a series of increasingly general entity
embeddings, and how we can learn symbolic rules that link properties from
subsequent spaces together.

To construct more general embeddings from the initial embedding provided
by the MDS method, we use stacked denoising auto-encoders [16]. Standard auto-
encoders are composed of an “encoder” that maps the input representation into
a hidden layer, and a “decoder” that aims to recreate the input from the hidden
layer. Auto-encoders are normally trained using an objective function that mini-
mizes information loss (e.g. Mean Squared Error) between the input and output
layer [2]. The task of recreating the input is made non-trivial by constraining the
size of the hidden layer to be smaller than the input layer, forcing the informa-
tion to be represented using fewer dimensions, or in denoising auto-encoders by
corrupting the input with random noise, forcing the auto-encoder to use more
general commonalities between the input features. By repeatedly using the hid-
den layer as input to another auto-encoder, we can obtain increasingly general
representations. To obtain the entity representations from our auto-encoders, we
use the activations of the neurons in a hidden layer as the coordinates of entities
in a new vector space.

The main novelty of our approach is that we characterize the salient prop-
erties (i.e. clusters of directions) modelled in one space in terms of salient prop-
erties that are modelled in another space. Specifically, we use the o↵-the-shelf
rule learner JRip [7] to predict which entities will be highly ranked, according to
a given cluster direction, using as features the rankings induced by the clusters
of the preceding space. To improve the readability of the resulting rules, rather
than using the precise ranks as input, we aggregate the ranks by percentile, i.e
1%, 2%, ..., 100%, where an entity has a 1% label if it is among the 1% highest
ranked entities, for a given cluster direction. For the class labels, we define a
movie as a positive instance if it is among the highest ranked entities (e.g. top
2%) of the considered cluster direction. Using the input features of each layer
and the class labels from the subsequent layer, these rules can be used to ex-
plain the semantic relationships between properties modelled by di↵erent vector
spaces. We note that one drawback of discretizing continuous attributes is that
the accuracy of the rules extracted from the network may decrease [14]. However,
in our setting, interpretability is more important than accuracy, as we do not
aim to use these rules for making predictions, but use them only for generating
explanations and getting insight into data.

4 Qualitative Evaluation

We base our experiments on the movie review text collection of the 15,000 top
scoring movies on IMDB1 made available by [6]. To collect the terms that are
likely to correspond to property names, we collect adjectives and nouns that
occur at least 200 times in the movie review data set, collecting 17,840 terms
overall. We share terms used for the property names across all spaces.

4.1 Software, Architecture and Settings

To implement the denoising auto-encoders, we use the Keras [3] library. For our
SVM implementation, we use scikit-learn [11]. We have made all of the code
and data freely available on GitHub2. We use a 200 dimensional MDS space
from [6] as the input to our stack of auto-encoders. The network is trained using
stochastic gradient descent and the mean squared error loss function. For the
encoders and decoders, we use the tanh activation function. For the first auto-
encoder, we maintain the same size layer as the input. Afterwards, we halve the
hidden representation size each time it is used as input to another auto-encoder,
and repeat this process three times, giving us four new hidden representations
{Input : 200, Hidden : 200, 100, 50, 25}. We corrupt the input space each time
using Gaussian noise with a standard deviation of 0.6. As the lower layers are
closer to the bag-of-words representation and are higher dimensional, the Kappa
scores are higher in earlier spaces, as it is easier to separate entities. We address
this in the clusters by setting the high Kappa score threshold T+ such that the
number of terms we choose from is twice the number of dimensions in the space.
Similarly, we set T� such that 12,000 directions are available to assign to the
cluster centres in every space.

4.2 Qualitative Evaluation of Induced Clusters

In Table 1, we illustrate the di↵erences between clusters obtained using stan-
dard auto-encoders and denoising auto-encoders. Layer 1 refers to the hidden
representation of the first auto-encoder, and Layer 4 refers to the hidden rep-
resentation of the final auto-encoder. As single labels can lead to ambiguity, in
Table 1 we label clusters using the top three highest scoring terms in the cluster.
Clusters are arranged from highest to lowest Kappa score.

Both auto-encoders model increasingly general properties, but the properties
obtained when using denoising auto-encoder properties are more general. For ex-
ample, the normal auto-encoder contains properties like “Horror” and “Thriller”,
but does not contain more general properties like “Society” and “Relationship”.
Further, “Gore” has the most similar properties “Zombie” and “Zombies” in
Layer 1, and has the most similar properties of “Budget” and “E↵ects” in Layer
4. By representing a category of movie where “Budget” and “E↵ects” are im-
portant, the property is more general.

1 http://www.cs.cf.ac.uk/semanticspaces/
2 https://github.com/eygrr/RulesFromAuto-encoders

T
a
b
l
e
1
.
A

com
p
arison

b
etw

een
th
e
fi
rst

layers
an

d
th
e
fou

rth
layers

of
tw

o
d
i↵
eren

t
k
in
d
s
of

au
to-en

co
d
ers.

S
t
a
n
d
a
r
d

A
u
t
o
-
e
n
c
o
d
e
r

D
e
n
o
i
s
i
n
g
A
u
t
o
-
e
n
c
o
d
e
r

L
a
y
e
r
1

L
a
y
e
r
4

L
a
y
e
r
1

L
a
y
e
r
4

h
orror:

terror,
h
orrifi

c
h
orror:

v
ictim

s,
n
u
d
ity

gore:
zom

b
ie,

zom
b
ies

so
ciety

:
v
iew

,
u
n
d
erstan

d
th
riller:

th
rillers,

n
oir

d
o
cu

m
en
tary

:
p
ersp

ective,
in
sigh

t
jokes:

ch
u
ck
le,

fart
em

otion
al:

in
sigh

t,
p
ortray

s
com

ed
ies:

com
ed

y,
tim

in
g

b
lo
o
d
:
k
illin

g,
e↵

ects
h
orror:

terror,
h
orrifi

c
stu

p
id
:
fl
ick

,
silly

ad
u
lts:

d
isn

ey,
ch
ild

ren
s

su
sp

en
se:

m
y
steriou

s,
ten

se
em

otion
ally

:
tragic,

stren
gth

gore:
b
u
d
get,

e↵
ects

h
u
sb
an

d
:
w
ife,

h
u
sb
an

d
s

th
riller:

th
rillers,

cop
gags:

zan
y,

p
aro

d
ies

m
ilitary

:
w
ar,

sh
ip

relation
sh
ip
s:

in
tim

ate,
an

gst
gory

:
gru

esom
e,

zom
b
ie

h
in
d
i:
b
olly

w
o
o
d
,
in
d
ian

rom
an

ce:
you

n
ger,

h
an

d
som

e
n
u
d
ity

:
n
aked

,
gratu

itou
s

b
eau

tifu
lly

:
satisfy

in
g,

b
rillian

tly
tou

ch
in
g:

teach
,
relate

rid
icu

lou
s:

aw
fu
l,
w
orse

p
olitical:

p
olitics,

n
ation

em
otion

al:
com

p
lex

,
stru

ggle
scary

:
frigh

ten
in
g,

terrify
in
g

govern
m
en
t:

tech
n
ology,

fo
otage

sm
art:

slick
,
sop

h
isticated

lau
gh

ed
:
lau

gh
in
g,

lou
d

d
o
cu

m
en
tary

:
d
o
cu

m
en
t,

n
arration

aw
esom

e:
ch
ick

,
lo
oked

creep
y
:
sin

ister,
atm

osp
h
eric

ch
arm

in
g:

d
eligh

tfu
l,
loves

ad
u
lts:

d
isn

ey,
teach

es
p
olitical:

cou
n
try,

d
o
cu

m
en
tary

lau
gh

ed
:
h
u
m
orou

s,
o↵

en
sive

h
ilariou

s:
fu
n
n
y,

p
aro

d
y

lau
gh

ed
:
b
row

,
lau

gh
ter

relation
sh
ip
:
relation

sh
ip
s,

sen
sitive

ad
ven

tu
re:

ad
ven

tu
res,

sh
ip

scares:
h
allow

een
,
slash

er
th
riller:

th
rillers,

p
ro
ced

u
ral

h
orror:

gen
re,

d
ark

action
s:

reaction
,
in
n
o
cen

t
fu
n
n
iest:

fu
n
n
ier,

gags
cgi:

an
im

ated
,
an

im
ation

w
aste:

con
cep

t,
p
lain

cu
te:

ad
orab

le,
rom

em
otion

s:
resp

ect,
relation

sh
ip
s

su
sp

en
se:

clu
es,

atm
osp

h
eric

arm
y
:
d
isc,

stu
d
io

b
ritish

:
en

glan
d
,
accen

t
lau

gh
:
m
om

,
crazy

d
u
m
b
:
m
in
d
less,

car
com

b
at:

en
em

y,
w
eap

on
s

h
orrib

le:
w
orse,

ch
eap

fi
lm

m
aker:

ap
p
roach

,
artist

p
olitical:

p
rop

agan
d
a,

citizen
s

su
p
p
ortin

g:
o�

ce,
m
arried

n
arrative:

fi
lm

m
aker,

stru
ctu

re
d
ram

a:
p
ortrayed

,
p
ortrayal

w
itty

:
d
eligh

tfu
lly,

sarcastic
am

azon
:
b
ou

gh
t,

cop
y

d
igital:

d
olb

y,
d
efi

n
ition

in
terv

iew
s:

in
clu

d
ed

,
sh
ow

ed
lau

gh
in
g:

ou
trageou

s,
m
ou

th
ed

stu
d
y
:
d
etails,

d
etail

gory
:
grap

h
ic,

gru
esom

e
com

ed
ic:

com
ed

ies,
h
u
m
orou

s
relation

sh
ip
s:

en
sem

b
le,

in
teraction

s
lan

d
:
w
ater,

su
p
er

rom
an

tic:
h
an

d
som

e,
attractive

em
otion

ally
:
cen

tral,
relation

sh
ip
s
creep

y
:
m
y
steriou

s,
eerie

ch
em

istry,
com

ed
ies,

com
ed

ic

4.3 Qualitative Evaluation of Induced Symbolic Rules

Our aim in this work is to derive symbolic rules that can be used to explain
the semantic relationships between properties derived from increasingly general
entity embeddings. We provide examples of such rules in this section. Since the
number of all induced rules is large, here we only show high accuracy rules that
cover 200 samples or more. Still, we naturally cannot list even all the accurate
rules covering more than 200 samples. Therefore we focus here on the rules
which are either interesting in their own right or exhibit interesting properties,
strengths or limitations of the proposed approach. The complete list of induced
rules is available online from our GitHub repository3.

For easier readability, we post-process the induced rules. For instance, the
following is a rule obtained for the property “Gore” in the third layer of the
network shown in the original format produced by JRip:

IF scares-L2 <= 6 AND blood-L2 <= 8 AND funniest-L2 >= 22
=> classification=+ (391.0/61.0)

In this rule, scares-L2 <= 6 denotes the condition that the movie is in the top
6% of rankings for the property “scares” derived from the hidden representation
of the second auto-encoder. We will write such conditions simply as “Scares2”.
Similarly, a condition such as funniest-L2 >= 22, which indicates that the
property is not in the top 22%, will be written as NOT Funniest2. In this simpler
notation the above rule will look as follows:

IF Scares2 AND Blood2 AND NOT Funniest2 THEN Gore3

This rule demonstrates an interpretable relationship. However, we have ob-
served that the meaning of a rule may not be clear from the property labels that
are automatically selected. In such cases, it is beneficial to label them by includ-
ing the most similar cluster terms. For example, using the cluster terms below
we can see that “Flick” relates to “chick-flicks” and that “Amazon” relates to
old movies:

IF Flick2 AND Sexual2 AND Cheesy2 AND NOT Amazon2 THEN Nudity3

Flick2: {Flicks, Chick, Hot}
Amazon2: {Vhs, Copy, Ago}

Rules derived from later layers use properties described by rules from previous
layers. By seeing rules from earlier layers that contain properties in later layers,
we can better understand what the components of later rules mean. Below, we
have provided rules to explain the origins of components in a later rule:

IF Emotions2 AND Actions2 THEN Emotions3
IF Emotions2 AND Emotion2 AND Impact2 THEN Journey3
IF Emotions3 AND Journey3 THEN Adventure4

3 https://github.com/eygrr/RulesFromAuto-encoders

We observe a general trend that as the size of the representations decreases
and the entity embeddings become smaller, rules have fewer conditions, resulting
in overall higher scoring and more interpretable rules. To illustrate this, we
compare rules from an earlier layer to similar rules in a later layer:

IF Romance1 AND Poignant1 AND NOT English1 AND NOT French1
AND NOT Gags1 AND NOT Disc1 THEN Relationships2

IF Relationships2 AND Emotions2 AND Chemistry2 THEN Romantic3
IF Emotions2 AND Compelling2 THEN Beautifully3
IF Warm2 AND Emotions2 THEN Charming3
IF Emotions2 AND Compelling2 THEN Emotional3

Rules in later layers also made e↵ective use of a NOT component. Below, we
demonstrate some of those rules:

IF Touching3 AND Emotions3 AND NOT Unfunny3 THEN Relationship4
IF Laughs3 AND Laugh3 AND NOT Compelling3 THEN Stupid4
IF Touching3 AND Social3 AND NOT Slasher3 THEN Touching4

As the same terms were used to find new properties for each space, the
obtained rules sometimes use duplicate property names in their components.
As the properties from later layers are a combination of properties from earlier
layers, the properties in later layers are refinements of the earlier properties,
despite having the same term. Below, we provide some examples to illustrate
this:

IF Emotions2 AND Actions2 THEN Emotions3

Emotions2: {Acted, Feelings, Mature}
Actions2: {Control, Crime, Force}
Emotions3: {Emotion, Issue, Choices}

IF Horror2 AND Creepy2 AND Scares2 THEN Horror3

Horror2: {Terror, Horrific, Exploitation}
Creepy2: {Mysterious, Twisted, Psycho}
Scares2: {Slasher, Supernatural, Halloween}
Horror3: {Creepy, Dark, Chilling}

IF Touching2 AND Chemistry2 THEN Touching3
IF Touching2 AND Emotions2 THEN Touching3
IF Compelling2 AND Emotional2 AND Suspense2 THEN Compelling3
If Romance2 AND Touching2 AND Chemistry2 THEN Romance 3

IF Emotionally2 AND Emotions2 AND Compelling2 THEN Emotionally3

5 Related Work

The work presented in this paper di↵ers from existing works in that it focuses on
inducing rules which involve salient and interpretable features from unstructured
text documents.

The existing neural network rule extraction algorithms can be categorized as
either decompositional, pedagogical or eclectic [1]. Decompositional approaches
derive rules by analysing the units of the network, while pedagogical approaches
treat the network as a black box, and examine the global relationships between
inputs and outputs. Eclectic approaches use elements of both decompositional
and pedagogical approaches. Our method could be classified as decompositional,
as we make use of the hidden layer of an auto-encoder. We will now describe
some similar approaches and explain how our methods di↵ers.

The algorithm in [10] is a decompositional approach that applies to a neu-
ral network with two hidden layers. It uses hyperplanes based on the weight
parameters of the first layer, and then combines them into a decision tree. Neu-
roLinear [15] is a decompositional approach applied to a neural network with
a single hidden layer that discretizes hidden unit activation values and uses a
hyperplane rule to represent the relationship between the discretized values and
the first layer’s weights. HYPINV [13] is a pedagogical approach that calculates
changes to the input of the network to find hyperplane rules that explain how
the network functions.

The main di↵erence in our work is that our method induces rules from prop-
erties derived from the layers of a network, rather than learning rules that de-
scribe the relationships between units in the network itself. Additionally, we
focus on learning increasingly general entity embeddings from hidden represen-
tations rather than tuning network parameters such that weights directly relate
to good rules.

Another recent topic that relates to our work is improving neural networks
and entity embeddings using symbolic rules [8]. In [12] a combination of first-
order logic formulae and matrix factorization is used to capture semantic rela-
tionships between concepts that were not in the original text. This results in
relations that are able to generalize well from input data.

This is essentially the opposite of the task we consider in this paper: using
embeddings to learn better rules. The rules that we derive are not intended to
explain how the network functions but rather to describe the semantic relation-
ships that hold in the considered domain. In other words, our aim is to use the
neural network representations in the hidden layer as a tool for learning logical
domain theories, where the focus is on producing rules that capture meaningful
semantic relationships.

6 Conclusions

In this paper, we have shown how we can obtain increasingly general entity
embeddings from stacked denoising auto-encoders, and how we can obtain rules

from those embeddings that capture domain knowledge. We have qualitatively
evaluated the obtained rules to demonstrate the semantic relationships that they
capture. The results show the potential of the method for exploratory analysis of
collections of unstructured text documents and explaining decisions of classifiers.

Acknowledgement. This work was supported by ERC Starting Grant 637277.

References

1. R. Andrews, J. Diederich, and A. B. Tickle. Survey and critique of techniques for
extracting rules from trained artificial neural networks. Knowledge-Based Systems,
8(6):373–389, 1995.

2. Y. Bengio. Learning Deep Architectures for AI. Foundations and Trends R� in
Machine Learning, 2(1):1–127, 2009.

3. F. Chollet. Keras. https://github.com/fchollet/keras, 2015.
4. J. Cohen. A Coe�cient of Agreement for Nominal Scales. Educational and Psy-

chological Measurement, 20(1):37, 1960.
5. J. Derrac and S. Schockaert. Enriching taxonomies of place types using Flickr.

Lecture Notes in Computer Science, 8367:174–192, 2014.
6. J. Derrac and S. Schockaert. Inducing semantic relations from conceptual spaces:

A data-driven approach to plausible reasoning. Artificial Intelligence, 228:66–94,
2015.

7. J. L. Herlocker, J. a. Konstan, and J. Riedl. Explaining collaborative filtering
recommendations. Proceedings of the ACM conference on Computer supported
cooperative work, pages 241–250, 2000.

8. Z. Hu, X. Ma, Z. Liu, E. Hovy, and E. Xing. Harnessing Deep Neural Networks
with Logic Rules. arXiv preprint, pages 1–18, 2016.

9. W. B. Kheder, D. Matrouf, P.-M. Bousquet, J.-F. Bonastre, and M. Ajili. Statisti-
cal Language and Speech Processing. Statistical Language and Speech Processing,
8791:97–107, 2014.

10. D. Kim and J. Lee. Handling continuous-valued attributes in decision tree with
neural network modeling. 1810:211–219, 2000.

11. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

12. T. Rocktäschel, S. Singh, and S. Riedel. Injecting logical background knowledge
into embeddings for relation extraction. Proceedings of the 2015 Human Language
Technology Conference of the North American Chapter of the Association of Com-
putational Linguistics, 2015.

13. E. W. Saad and D. C. Wunsch. Neural network explanation using inversion. Neural
Networks, 20(1):78–93, 2007.

14. R. Setiono, B. Baesens, and C. Mues. Recursive neural network rule extraction for
data with mixed attributes. IEEE Transactions on Neural Networks, 19(2):299–
307, 2008.

15. R. Setiono and H. Liu. Neurolinear: From neural networks to oblique decision
rules. Neurocomputing, 17(1):1–24, 1997.

16. P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and com-
posing robust features with denoising autoencoders. Proceedings of the 25th inter-
national conference on Machine learning, pages 1096–1103, 2008.

Shared Multi-Space Representation

for Neural-Symbolic Reasoning

Edjard de S. Mota and Yan B. Diniz

Federal University of Amazonas
Institute of Computing

Av. Rodrigo Octávio, 6200 CEP 69077-000 Manaus, Brasil
{edjard,ybd}@icomp.ufam.edu.br

Abstract. This paper presents a new neural-symbolic reasoning approach based on a shar-
ing of neural multi-space representation for coded fractions of first-order logic. A multi-space
is the union of spaces with different dimensions, each one for a different set of distinct fea-
tures. In our case, we model the distinct aspects of logical formulae as separated spaces
attached with vectors of importance weights of distinct sizes. This representation is our
approach to tackle the neural network’s propositional fixation that has defied the commu-
nity to obtain robust and sound neural-symbolic learning and reasoning, but presenting
practical useful performance. Expecting to achieve better results, we innovated the neuron
structure by allowing one neuron to have more than one output, making it possible to share
influences while propagating them across many neural spaces. Similarity measure between
symbol code indexes defines the neighborhood of a neuron, and learning happens through
unification which propagates the weights. Such propagation represents the substitution of
variables across the clauses involved, reflecting the resolution principle. In this way, the net-
work will learn about patterns of refutation, reducing the search space by identifying a region
containing ground clauses with the same logical importance.

1 Introduction

This paper presents a new neural-symbolic reasoning approach based on neural sharing of multi-
space representation for a coded portion of first-order formulae suitable for machine learning and
neural network methods. The Smarandache multi-space [9] is a union of spaces with different
dimensions, each one representing a different set of distinct features. We distribute across such
a structure the different aspects of logical expressions along with vectors of weights of distinct
sizes. With such a representation one can compute the degree of importance, that is induced by
the resolution principle and unification across distinct dimensions of the logical structure during a
deduction [12], taking such spaces into account.

There have been some efforts to deal with the neural network’s propositional fixation [10],
since it was argued in [4] that for some fragments of first-order logics such a limitation can be
overcome, for instance [1, 7]. However, their attempt to provide robust and sound neural-symbolic
learning and reasoning were unsuccessful, as they all lack practical useful performance [3], defying
us to tackle this issue from a different perspective. Looking at Amao1 structure sharing-based
1 A cognitive agent we are developing at the Intelligent and Autonomous Computing group at IComp in

UFAM

implementation [13, 2], as in most Prolog engines, we felt like transforming them into a structure
sharing of code indexes and use it for neural learning computation.

Automated deduction based on Resolution Principle [12], reduces the search space by trans-
forming the task of proving the validity of a formula to prove that its negation is inconsistent.
The main struggle with doing first-order logic reasoning in connectionist approaches is that the
variable binding of terms may lead to a huge, if not infinite, number of neurons for all elements of
the Herbrand Base. We realized that, instead of doing this, neural reasoning could actually points
to "neural regions" where the negation of a given formula were most likely to be inconsistent.
The difference would be the use of a structured neural network trained to learn about regions of
potential refutations before one is even requested. This is only possible if the network learns from
the initial set of formulae and self-organize in regions of refutation.

In this paper, we introduce the Shared Neural Multi-Space (Shared NeMuS) of coded first-
order expressions (CFOE), a weighted multi-space of CFOEs. The idea is to give a relative degree of
importance for each element within it according to the element attributes and similarity with others
structurally equivalent. Similarity defines the neighborhood of an element and neural learning is
performed by the propagation of weights through unification. Such propagation represents the
substitution of variables across the clauses involved, reflecting resolution principle for first-order
logic[12]. In this way the network will learn about patterns of refutation to reduce the search space
when queries are proposed.

Before describing the formalities of our approach, section 2 shows the fundamental aspects
of the neural shared multi-spaces of CFOEs. In a Shared NeMuS one neuron represents logical
expression and it may have many inputs of importance as well as outputs that influence others.
We formally present the shared NeMuS for CFOEs in section 3 to capture the fundamentals
described. In section 4 we detail the mechanisms to train such a structured neural net based
on an adapted best-match similarity measure for learning patterns of resolution-based deduction.
This innovative way of creating a structured neural network, shared NeMuS, may not fit in the
standards of the machine learning field as discussed in section 5. Nonetheless, such a perspective
can bring new light to the way neural-symbolic learning and reasoning is performed for first-order
logic as we discuss in section 6.

2 Fundamentals of Neural Sharing of Multi-Space

We use Smarandache multi-space [9], which is a union of n spaces A1, . . . , An in which each Ai is the
space of a distinct observed characteristic of the overall space. For each Ai there is a different metric
to describe a different side (or objetive), of the "major" side (or objective). In this perspective, first-
order language has atomic constants (of the Herbrand universe), function, predicate with its literal
instances, and clause spaces. Variables are used to refer sets of atomic terms via quantification,
and they belong to the same space of atoms. Figure 1.(a) depicts a multi-space representation of
first-order expressions with n clauses, at space 3, each one defined by a (possibly different) number
of literals at space 2. Each literal is composed of terms either from function space 1 or constant
space 0, or both. Lines from one element covers its compound terms at the space below.

The neural network embedded within such a multi-space is based on a chain of importance
weights, having constant space as the basic level of importance. In their turn, weights of the
constant space induce the importance weights of functions space, and both (constant and function)
spaces induces weights of the predicate space according to literal instances within it. Finally, weights

of predicate space induces clauses importance weights. Figure 1.(b) depicts the neural multi-space
of FOEs, in which weights are the (blue) arrows representing the influence of attributes from one
space on objects at one or two space above them.

Different from traditional Artificial Neural Networks (ANN), one single neuron may have, along
with its inputs (weights of influence), more than one output representing its influence upon more
than one element at a space level above. From Figure 1.(b) constant a3 affects literals l1 and
l2 of clause C1, and it affects l1 of clause Cn. Note that there are two l1 logical objects, but if
both are positive/negative instances of the same predicate, then there should be just one neuron
representation in this case rather then replicating information.

Fig. 1. (a) A general sharing multi-space of FOEs. (b) A neural sharing multi-space of FOEs

To avoid such repetition, we adopted the sharing of structure idea [13]: every logical neural
element is a pair. The first component is the neuron symbol–attribute pair, formed by symbol code
and a vector of indexes with the space each one belongs to. The second component is a vector
of structured weights pointing to the elements the neuron exerts influence. A structured weight
neuron is, in the case of constant neural space, a triple: the space index (0 up to 3), the code index
of the symbol upon which it influences, and the value of the influence. A triple is used because
atoms at level 0 can be attributes of functions (at level 1) or of a literal (at level 2), e.g. constant
a2, and most import is to tell the influence of a term on a function from a literal, like a2 does on
function f1 as well as on literal lk. For all other spaces, a structured weight is pair because, from
space 1, every neuron will exert influence only on neurons at one level above.

When a shared NeMuS of FOE is generated all weight vectors of its components, at all levels,
are set to zero to represent no previous learning. Then training is divided into two phases. In the
first, every ground clause (clause with no variables), has its weights updated according to the code
of its symbol components. This will create the importance of clauses, expressed in weights. Then,
clauses that had their weights updated will propagate them via similarity of the predicate space,
yielding regions associated to such similarity measure.

In the second phase, every clause with more than one literal and at least one variable, called
deduction rule, is divided into two parts: conclusion and assumptions. For each assumption p of
a deduction rule, with an index code ip, a sort of neural unification is applied between p and its
complementary literal with same index, if there is any, at the negative region of predicate space.
The premisses with successful unification will update their weights from their components, and
the weights of the conclusion will be updated by the weights of the shared variables. In the case

of functions, not only variable weights are updated, but the composition of predicate and variable
weights will update the weights of functions.

3 NeMuS Framework for Coded First-order Expressions

3.1 Amao Logical Language

Amao2 symbolic representation and reasoning component is a clausal-based formal system [14],
in which clauses are divided into two categories. 1) Initial Clauses, say B, are those belonging to
the set of axioms plus the negation of the query; 2) structured Clauses are the ones derived by a
sort of Linear Resolution [12]. Roughly, if S is a sentence or query, in clausal form, and B is the
set of initial clauses, then a deduction of S from B corresponds to derive an empty clause, t, from
{s S}[B, or according to Herbrand theorem, to prove that {s S}[B is unsatisfiable and it yields
the most general unifier for S.

A set of logical formulae is represented by clauses of literals according to the following ter-
minology. Predicates and constant or atomic symbols start with lowercase letters like p, q, r, . . .
and a, b, c, . . ., respectively. Variables start with capital letters, like X,Y, A term is either a
variable, a constant symbol or a function f(t1, . . . , tk) in which f represents a mapping from terms
t1, . . . , tk to an "unknown" individual. If p is a symbol representing a predicate relation over the
terms t1, . . . tn, then p(t1, . . . , tn) is a valid atomic formula. Predicates and functions are compound
symbols with similar structure, but with different logical meaning. A literal is either an atomic
formula, L, or its negation s L, and both are said to be complementary to each other. A Deduction
Rule is a disjunction of literals L1, . . ., Ln, written as L1; . . . ; L1. There may exist more than one
positive literal, an so any Horn clause is represented by Head;s body, in which literals of the body
are called assumptions.

Example 1. The following is a valid sequence of clauses, each with its unique index code.

1. p(a). 3. r(a). 5. q(X, f(X)) ; s p(X)
2. p(b). 4. r(c). 6. s(X, f(Y)) ; s r(X);s p(Y)

3.2 First-Order Expressions as Multi-Spaces

Amao symbolic reasoning component parses and translates a sequence of clauses into an internal
structure of shared of data connected via memory address pointers. This representation is very effi-
cient for dealing with symbols, and the idea of sharing data could be used to create computational
efficient neural representations of clauses. Formal logic languages are structurally well defined, and
such a structure can be thought as a structure of indexes. Instead of training a neural network
with bare data like other approaches, e.g. [7], we decided to use an efficient encoding of shared
structures, and turn them into spaces of index to build up a first-order neuronal multi-space.

For this purpose, Amao makes use of a symbolic hash mapping [8] (SHM), that maps symbolic
objects of the language to a hash key within a finite range. Such a key is not the one used for
2 Amao is the name of a deity that taught people of Camanaos tribe, who lived on the margins of the

Negro River in the Brazilian part of the Amazon rainforest, the process of making mandioca powder and
beiju biscuit for their diet.

learning because there may occur collisions. For this reason a separate chaining is used to place
keys that collide in a list associated with index, in which every node contains the kind of occurred
symbol. Counters were added so that to every new symbol parsed and "hashed", a code hash
mapping (CHM) function generates the next natural number, starting from 1. In this way, every
single symbol has a unique index, and such an index shall be the one used for neural learning
mechanism. All codes compose what we call coded corpus defined as follows.

Definition 1 (First-order Coded Corpus (FOCC)) Let C, F and P be a finite sets of con-
stants, functions and predicates, respectively. The First-order Coded Corpus is a triple of asso-
ciative hash mappings hfC , fF , fP i, such that fC : C ! N, fF : F ! N and fP : P ! N. The
mappings fF and fP take into account the arity of each function and predicate, to generate their
indexes n 2 N. Each element of a FOCC triple C shall be identified as CC , CF and CP .

Note that the uniqueness of a mapping is only within a corpus space, i.e. the code "1" will be
the index of the first predicate found, as well as the first atom four in the case of formula p(a) be
the first clause parsed. Figure 2 depicts a possible FOCC generated from clauses of example 1.

Fig. 2. First-order coded corpus of logical symbols from Example 1.

The result of parsing of any logical formula is passed to the corpus generation, which is also fed
with variable indexes according to their clause scope. From a reasoning perspective, variables can
be interpreted as an abstract way to talk about sets of atomic constants. For efficiency sake it is
assumed that both belong to two different regions of the same space: positive region for constant
symbols and negative for variable appearing in all clauses. The scope of each variable is bound via
weights. The following two definitions capture these idea, in which Z0 means Z \ {0}.

Definition 2 (Subject Binding) Let k 2 N be an index, h 2 {1, 2} , i 2 Z0 and w 2 R. The
Subject Binding of k is the triple (h, i, w), and it represents that subject with index k influences
object with index i at space h with measure w.

The spaces a subject may influence are the function space (1) and the predicate space (2) (see
Figure 1). As said above variables can be seen as a way to refer to sets of constants, either atoms
or (mostly ground) functions. To be identified outside the subject space a variable shall always be
a negative number, but its influence or subject binding will be accessed by its absolute value from
the variable region of the subject space.

Definition 3 (Neural Subject Multi-Space (NeSuMS)) Let C� = [x1, . . . , xm] and V� =
[y1, . . . , yn], where each xi(yi) is a vector of subject binding, be two subject binding spaces for
constants and variables, respectively. A Neural Subject Multi-Space is the pair (C� , V�).

Functions and predicates have a different sort of binding, or importance, along with the infor-
mation about their attributes. As they are both structurally alike, they are treated in the same
way regarding their composition. Their binding is simpler than subject binding because they just
need the logical element index at the space above and the value of such influence. In both cases,
their attributes are uniquely identified by space, either zero (for subject space) or one (for function
space), and the attribute index. In the case of space 0, if attribute index is less than zero this
means that it refers to the variable region.

Definition 4 (Neural Compound Multi-Space (NeComMS)) Let h1, . . . , hm 2 {0, 1} be space
indexes (for variable and function, i.e. 0 or 1), a1, . . . , am 2 Z0,

�!
xi
a = [(h1, a1), . . . , (hm, am)] a

vector of pairs space-index of compound i, w1, . . . , wn are vectors of Compound Binds w 2 Z0⇥R.
Then a Neural Compound Multi-Space, with k compounds, will be [(

�!
x1
a,
�!!1), . . . , (

�!
xk
a,
�!!k)], in which

every
�!
xi
a may have a different size m as well as every �!!i, and i = 1 . . . k .

Predicates, a part from the symbols uniquely indexed in the corpus, have their positive and
negative occurrences, and so there will be two regions for predicate space too. This is one of the
difference between predicates and functions, the other is their logical value. So, the spaces for them
are defined as follows

Definition 5 (Function and Predicate Neural Multi-Spaces) Let Cf , C+
p and C�

p be NeComMS,
such that Cf has index space one (1), and C+

p and C�
p have both index space two(2). Then Cf is

called a Function Neural Multi-Space, and every �!! appearing in Cf represents a vector of influ-
ences upon elements of space two (2). The pair (C+

p , C�
p) is called a Predicate Neural Multi-Space

(LMS), in which every �!! appearing on both represent a vector of influences upon elements of space
three (3) of clause.

Clause spaces are simpler than compound spaces (functions and predicates) because clauses
have "attributes" (their literals), but exert no influence upon spaces above, at least for the scope
out our current research. One may think in terms of non-classical logics as adding other spaces
composed of clauses that influence them. A clause is just an special case of a compound MS in
which every weight vector has just one dimension pair (_, 0), where the _ symbol represents an
anonymous logical object, and 0 represents no known influence to above spaces. The attributes
will represent the literals that compose the clause.

Definition 6 (Neural Multi-Space of Clauses) Let k1, . . . , km 2 Z0 be predicate index codes,
a Neural Clause at clause multi-space is C = ([(2, k1), . . . , (2, km)], [(_, 0)]). A Neural Multi-Space
of Clauses is simply [C1, . . . , Cn] in which every Ci, i = 1..n, is a neural clause.

Definition 7 (Shared NeMuS of CFOE) Let S, F , P and C be a subject, function, predicate
and clause neuronal multi-spaces. Then, we call a Shared Neural Multi-Space of CFOE to the
ordered space hS,F ,P, Ci

4 Amao Learning Mechanism

In this section we present shared NeMuS learning process that is based on Kohonen [6] Self-
Organizing Maps (SOM), although any learning mechanism could be used. Because shared NeMuS
is not a standard matrix as in vector-spaces, distance measures are performed in different ways
as it shall be clear in the sequel. The SOM training phase calculates the euclidean distance from
the input vector to every neuron on the map. After that, it searches for the best match unity and
updates the weights of every neuron in the neighborhood. The neighborhood of a single clause is
defined by the index of a predicate. The following equation is used to update the weight vector:

�!! (t+1) =
�!! (t) + ⌘(�!! I ��!! (t)) (1)

in which ⌘ is the learning rate, �!! (t) and �!! I are a multi-space vectors of weights, and t represents
the epoch of interaction. We adapted the best match unity �!! bm for our purposes, making it possible
to apply resolution on clauses with complementary literals. In NeMuS this is easily obtained because
the representation of any literal is its predicate index code in the positive region of the predicate
space, and its complementary literal should have same index in the negative region, so the access
is of complexity O(1).

Training steps

This phase starts after the shared NeMuS structure had just been created from the compilation
of the symbolic KB.The input for training is the KB itself and the steps are divided into two
parts: one to deal with ground atomic formulae and the other deals with formulae with variables,
henceforth called deduction rules (defined in section 3.1). Let �!! I be an arbitrary input where its
weights are represented by a CFOE, and NKB = hS,F ,P, Ci a shared NeMuS.

Algorithm 1 Chain training
1: for every clause C 2 C do

2: if C has just one literal then . (Process of ground atoms.)
3: for k 2 C a index for predicate codes do

4: �!
! (t+1) = [!C ,!k,!1...,!m] + ⌘(�!wI � [!C ,!k,!1...,!m])

5: if C has more than one literal then . (Process of deduction rules.)
6: for k a index for predicate codes 2 C do

7: if k > 0 then

8: for f a function attribute of predicate with code k do

9: for v a variable 2 f do

10: {!C ,!k} = {!k,!f} = {!bm,!bm}, for every function, or literal in clause C.
11: else

12: for a variable attribute v from predicate with code k do

13: {!C ,!k} = {!bm,!bm}, for every literal 2 C.

Refutation Pattern Learning Mechanism

The refutation pattern learning mechanism of Amao, called NeMuS NeuraLogic Reasoner, will try
to find one refutation pattern for the input vector, has two important tasks that defines what was
learned.

1. to recognize the refutation for a query (deduction rule inference with no premisses), it just
needs to identify the region within its trained shared NeMuS for which all variable can be
assigned a value.

2. to recognize the refutation for a ground formulae with more than one literal, it just need to
compare the weight values of the input with the region indicated in the training phase, and if
it is different, the answer is false, otherwise true.

Running Experiment on Refutation Pattern

The first test shows classical Modus Ponens reasoning with deduction rules having no restriction
on the number of variables, and also when we have one level function. Using the NeMuS training
on knowledge base presented in Example 1, we obtained these weights:

Symbolic Representation Neural Representation
1. p(a). (1.44, 0.84, 1.44)
2. p(b). (1.44 0.84, 1.44)
3. r(a). (3.12, 1.68, 2.04)
4. r(c). (3.12, 1.68, 2.04)
5. q(X, f(X)); ⇠p(X). (1.04, 0.84, 1.44, 0.84, 1.44)
6. s(X, fY));⇠r(X); ⇠p(X). (1.52, 1.68, 2.04, 0.84, 1.44, 1.68, 2.04, 0.84, 1.44)

Table 1. A NeMuS net trained

There are two important things to consider regarding the test results. The first is the trans-
lation of the symbolic input (query) into a NeMuS format with its vector of input weights �!! I .
Second, identify the region this NeMuS object is most likely to belong. Furthermore, there must
be a "kind of relation" between the input and the region which best matches it. For this Amao
NeuraLogic reasoner creates a relation between region and the input. On the following table we
present a best match selection from a single proof:

Proof p(X) :
1. Converting to �!wI : {1.44, 0.84, 0}

The conversion of X is 0, because it is not in p.
2. Search for best match:

Distance p(X) $ p(a) 1.44
Distance p(X) $ p(b) 1.44
Distance p(X) $ r(a) 2.20617
Distance p(X) $ r(c) 2.20617
Distance p(X) $ q(X, f(X)) 2.76261
Distance p(X) $ q(X, f(Y)) 4.17248

With the information about the distance, NeuraLogic reasoner can define a relation between
input and the best match solution. With the shortest distance 1.44, X can assume two values,
{X/a} and {X/b}. Now we are going to force a true and false for proposition, asking for:

Proof s(a, f(c)):
1. Converting to �!! I : {1.68, 0, 0.84, 0, 1.68, 2.04, 0.84, 1.44}

From the translation we know that exist r(a) and p(c), and so their values are not 0. However,
as it is not known whether there is a s(a, f(c)), their values for that positions are 0.

2. Search for best match give us: 2.49704.
So now the shared NeMuS learn that 2.49704 is true.

Proof s(c, f(b)):

1. Converting to �!! I : {1.68, 0, 0.84, 0, 1.68, 0, 0.84, 0}

2. Search for best match give us: 3.53135
With this shared NeMuS knows the maximum distance for true is 2.49704 and the answer is
so far, that it’s false.

Example 2. This example shows how first-order inductive learning can be easily dealt when recur-
sive deduction rules are defined. For instance, to find a path on a graph can be simply defined with
this knowledge base.

1. link(a, b). 3. link(c, d). 5. path(XY) ; s link(X,Y)
2. link(b, c). 4. link(d, e). 6. path(X,Y) ; s link(X,Z);s path(Z, Y).

After knowledge base be represented it’s possible to do training process:

Symbolic Representation Neural Representation
1. link(a,b). (3.35, 0.974, 1.44, 1.44)
2. link(b,c). (3.35, 0.974, 2.28, 2.28)
3. link(c,d). (3.35, 0.974, 3.12, 3.12)
4. link(d,e). (3.35, 0.974, 3.96, 3.96)
5. path(X, Y);⇠link(X, Y). (4.89, 0.974, 3.39, 3.39, 0.974, 3.39, 3.39)
6. path(X,Y);⇠link(X, Z);⇠path(Z, Y). (4.89, 0.974, 3.39, 3.39, 0.974, 3.39, 3.39, 0.974, 3.39, 3.39)

Table 2. Trained base of path between links problem.

Notice that there is a recursive rule, when X 6= Y on clause 5, a value for Z is necessary on 6.
So this search goes on until link(X,Y) is true, or no path from X to Y is found. Our proposition
is to give such a responsibility to NeuraLogic reasoner to perform an iterative process to verify if
there is a path from X to Y by checking region weights. This is described in the following process
to deal with path(X, Y).

For i a weight 2 P
- If there’s a index CFOE with �!! i and �!! Y with the same weight, answer true.
- Else

- If there’s a index CFOE with weight �!! i and �!! X with the same weight
�!! X �!! i

- Else the answer is false.

For now we can not avoid this iterative process to express a recursive execution, so NeuraLogic
reasoner have only to give the right answer when it is asked for a link.

5 Related Work

Developing robust and sound, yet efficient, neural-symbolic learning and reasoning is the ultimate
goal of the marriage between neural networks and symbolic (logical) reasoning[3]. The approach
presented in this paper falls in the category of the ones pursuing for a feasible representation to
overcome John McCarthy’s claim that connectionist systems have propositional fixation[10], but
which provides a feasible implementation to achieve useful performance.

Some recent approaches that sought to overcome this issue have proposed frameworks to allow
expressive representation of complex nesting of symbols in first-order formulae. Komendantskaya
proposed unification neural network [7], to allow first-order connectionist deduction. Practical
results were not proven to be easily achieved for arbitrary first-order formulae having a (potential)
infinite number of symbols. The proposed CFOE representation (section 3.2) has no such limit,
and the sharing of neural CFOE makes the access of any neuron of O(1) complexity in any case,
while saving storage space. This is also an advantage when compared to Pinkas, Lima and Cohen,
[11], who designed pools (tables) for symbols to allow the nesting of bindings and to keep track
of unification. Despite the claimed efficiency when compared to the former, the pools are actually
matrices representing directed acyclic graph. Sets of formulae with different numbers of terms and
literal would generate sparse matrices compromising the complexity of the algorithms for learning
and reasoning.

Guillame-Bert, Broda and Garcez, [5], encoded first-order formulae as vectors of real number
from Cantor set aiming to provide neural-symbolic inductive learning about first-order rules. The
type restriction on terms, but not on sub-terms, weakened the claimed expressive power. The
generation of codes for large sets of first-order sentences may have an impact on the efficiency of
the training process. Besides, our approach does not suffer the type restriction since it is already
based on a multi-space concept where every logical symbol e well placed in its appropriate space.

6 Concluding Remarks

In this paper we presented a novel approach for neural-symbolic learning and reasoning of first-
order logic. Our main purpose was to create a neural model that we could characterize patterns of
proof by refutation, based on the resolution principle with unification for first order inference. There
were two well known challenges to be tackled in or der to achieve this general and ambitious goal:
to overcome the propositional fixation and a neural network architecture that could allow efficient
computations. This means, Amao should perform reasoning faster than symbolic approaches as it
should take advantage of having learned something about the domain.

These challenge were dealt with a little ingenuity of the shared NeMuS (Neural Multi-Space
approach), which combines Smarandache multi-space modeling technique with sharing of structure
concept from Boyer-Moore efficient implementation of Prolog engines. By separating in spaces

constants and variables, functions, predicates (literals) and clauses, we treated each of this logical
objects as a type since each has specific computations for the overall neural computation of learning
and reasoning.

Our main contribution was to show, like in Example 2 (in the end of section 4), that first-
order neural-symbolic reasoning does not need to compute the entire Herbrand base (i.e. the set
of ground atomic formulae). Amao used its trained shared NeMuS to iterate over the regions of
similar ground atomic formulae and efficiently find a refutation or say the query does not follow
from what it has learned. However, some interesting challenges remain to be tackled and we point
some here.

– recursive deduction rules generating a potentially infinite number of ground terms, e.g. s(s(s(. . .))),
were not tested. Although Amao is not likely to deal with it, another space orthogonal to all
others seem to be one solution to deal with recursive loops on functions.

– a part from induction inference by recursive rules, which other kinds of deduction pattern can
a self-trained NeMuS recognize?

References

1. Bader, S., Hitzler, P., Hölldlber, S.: Connectionist model generation: A first-order approach. Neuro-
computing 1(71), 2420–2432 (2008)

2. van Emden, M.H.: An interpreting algorithm for Prolog programs, Ellis Horwood Series Artificial
Intelligence, vol. 1, chap. 2, pp. 93–110. Ellis Horwood (1984)

3. d’A. Garcez, A., Besold, T.R., de Raedt, L., Földiak, P., Hitzler, P., Icard, T., Kühnberger, K.U.,
Lamb, L.C., Miikkkulainen, R., Silver, D.L.: Neural-symbolic learning and reasoning: Contributins
and challenges. In: AAAI Spring Symposium on Knowledge Representation and Reasoning: Integrating
Symbolic and Neural Approaches - Dagstuhl (2014)

4. d’Avila Garcez, A.S., Broda, K., Gabbay, D.: Neural-Symbolic Learning Systems: Foundations and
Applications, Perspectives in Neural Computing. Springer-Verlag (2002)

5. Guillame-Bert, M., Broda, K., d’Avila Garcez, A.: First-order logic learning in artificial neural net-
works. In: International Joint Conference on Neural Networks (IJCNN). pp. 1–8. IEEE (2010)

6. Kohonen, T.: Self-Organizing Maps. Springer, 3rd edn. (2001)
7. Komendantskaya, E.: Unification neural networks: unification by error-correction learning. Logic Jour-

nal of the IGPL 19(6), 821–847 (May 2010)
8. Konheim, A.G.: Hashing in Computer Science: Fifty Years of Slicing and Dicing. John Wiley & Sons

(2010)
9. Mao, L.: An introduction to smarandache multi-spaces and mathematical combinatorics. Scientia

Magna 3(1), 54–80 (2007)
10. McMCarthy, J.: Epistemological challenges for connectionism. Behavioral and Brain Sciences 11(1),

11–44 (1988)
11. Pinkas, G., Lima, P., Cohen, S.: Representing, binding, retrieving and unifying relatinal knowledge

using pools of neural binders. Elsevier Biologically Inspired Cognitve Architectures 1(6), 87–95 (2013)
12. Robinson, A.: A machine-oriented logic based on the resolution principle. Journal of the ACM 12(1),

23–42 (1965)
13. R.S. Boyer, J.M.: The sharing of structure in theorem-proving programs. In: Bernadrd Meltzer, D.M.

(ed.) Annual Machine Intelligence. vol. 7, pp. 101–116. Edinburgh University Press (1972)
14. Vieira, N.: Máquinas de Inferência para Sistemas Baseados em Conhecimento. Ph.D. thesis, Pontifícia

Universidade Católica do Rio de Janeiro (1987), phD Thesis

Logic Tensor Networks: Deep Learning and Logical

Reasoning from Data and Knowledge

?

Luciano Serafini1 and Artur d’Avila Garcez2

1 Fondazione Bruno Kessler, Trento, Italy, serafini@fbk.eu
2 City University London, UK, a.garcez@city.ac.uk

Abstract. We propose Logic Tensor Networks: a uniform framework for inte-
grating automatic learning and reasoning. A logic formalism called Real Logic is
defined on a first-order language whereby formulas have truth-value in the inter-
val [0,1] and semantics defined concretely on the domain of real numbers. Logical
constants are interpreted as feature vectors of real numbers. Real Logic promotes
a well-founded integration of deductive reasoning on a knowledge-base and ef-
ficient data-driven relational machine learning. We show how Real Logic can be
implemented in deep Tensor Neural Networks with the use of Google’s TEN-
SORFLOWTM primitives. The paper concludes with experiments applying Logic
Tensor Networks on a simple but representative example of knowledge comple-
tion.

Keywords: Knowledge Representation, Relational Learning, Tensor Networks, Neural-
Symbolic Computation, Data-driven Knowledge Completion.

1 Introduction

The recent availability of large-scale data combining multiple data modalities, such
as image, text, audio and sensor data, has opened up various research and commer-
cial opportunities, underpinned by machine learning methods and techniques [5, 12,
17, 18]. In particular, recent work in machine learning has sought to combine logical
services, such as knowledge completion, approximate inference, and goal-directed rea-
soning with data-driven statistical and neural network-based approaches. We argue that
there are great possibilities for improving the current state of the art in machine learning
and artificial intelligence (AI) thought the principled combination of knowledge repre-
sentation, reasoning and learning. Guha’s recent position paper [15] is a case in point,
as it advocates a new model theory for real-valued numbers. In this paper, we take
inspiration from such recent work in AI, but also less recent work in the area of neural-
symbolic integration [8, 10, 11] and in semantic attachment and symbol grounding [4]
to achieve a vector-based representation which can be shown adequate for integrating
machine learning and reasoning in a principled way.

? The first author acknowledges the Mobility Program of FBK, for supporting a long term visit
at City University London. He also acknowledges NVIDIA Corporation for supporting this
research with the donation of a GPU.

This paper proposes a framework called Logic Tensor Networks (LTN) which inte-
grates learning based on tensor networks [26] with reasoning using first-order many-
valued logic [6], all implemented in TENSORFLOWTM [13]. This enables, for the first
time, a range of knowledge-based tasks using rich knowledge representation in first-
order logic (FOL) to be combined with efficient data-driven machine learning based on
the manipulation of real-valued vectors1. Given data available in the form of real-valued
vectors, logical soft and hard constraints and relations which apply to certain subsets
of the vectors can be specified compactly in first-order logic. Reasoning about such
constraints can help improve learning, and learning from new data can revise such con-
straints thus modifying reasoning. An adequate vector-based representation of the logic,
first proposed in this paper, enables the above integration of learning and reasoning, as
detailed in what follows.

We are interested in providing a computationally adequate approach to implement-
ing learning and reasoning [28] in an integrated way within an idealized agent. This
agent has to manage knowledge about an unbounded, possibly infinite, set of objects
O = {o1, o2, . . . }. Some of the objects are associated with a set of quantitative at-
tributes, represented by an n-tuple of real values G(o

i

) 2 Rn, which we call grounding.
For example, a person may have a grounding into a 4-tuple containing some numerical
representation of the person’s name, her height, weight, and number of friends in some
social network. Object tuples can participate in a set of relations R = {R1, . . . , Rk

},
with R

i

✓ O↵(R
i

), where ↵(R
i

) denotes the arity of relation R
i

. We presuppose the
existence of a latent (unknown) relation between the above numerical properties, i.e.
groundings, and partial relational structure R on O. Starting from this partial knowl-
edge, an agent is required to: (i) infer new knowledge about the relational structure on
the objects of O; (ii) predict the numerical properties or the class of the objects in O.

Classes and relations are not normally independent. For example, it may be the case
that if an object x is of class C, C(x), and it is related to another object y through
relation R(x, y) then this other object y should be in the same class C(y). In logic:
8x9y((C(x) ^ R(x, y)) ! C(y)). Whether or not C(y) holds will depend on the
application: through reasoning, one may derive C(y) where otherwise there might not
have been evidence of C(y) from training examples only; through learning, one may
need to revise such a conclusion once examples to the contrary become available. The
vectorial representation proposed in this paper permits both reasoning and learning as
exemplified above and detailed in the next section.

The above forms of reasoning and learning are integrated in a unifying framework,
implemented within tensor networks, and exemplified in relational domains combining
data and relational knowledge about the objects. It is expected that, through an ade-
quate integration of numerical properties and relational knowledge, differently from the
immediate related literature [9, 2, 1], the framework introduced in this paper will be ca-
pable of combining in an effective way first-order logical inference on open domains
with efficient relational multi-class learning using tensor networks.

The main contribution of this paper is two-fold. It introduces a novel framework
for the integration of learning and reasoning which can take advantage of the repre-

1 In practice, FOL reasoning including function symbols is approximated through the usual
iterative deepening of clause depth.

sentational power of (multi-valued) first-order logic, and it instantiates the framework
using tensor networks into an efficient implementation which shows that the proposed
vector-based representation of the logic offers an adequate mapping between symbols
and their real-world manifestations, which is appropriate for both rich inference and
learning from examples.

The paper is organized as follows. In Section 2, we define Real Logic. In Section
3, we propose the Learning-as-Inference framework. In Section 4, we instantiate the
framework by showing how Real Logic can be implemented in deep Tensor Neural
Networks leading to Logic Tensor Networks (LTN). Section 5 contains an example of
how LTN handles knowledge completion using (possibly inconsistent) data and knowl-
edge from the well-known smokers and friends experiment. Section 6 concludes the
paper and discusses directions for future work.

2 Real Logic

We start from a first order language L, whose signature contains a set C of constant sym-
bols, a set F of functional symbols, and a set P of predicate symbols. The sentences of
L are used to express relational knowledge, e.g. the atomic formula R(o1, o2) states that
objects o1 and o2 are related to each other through binary relation R; 8xy.(R(x, y) !
R(y, x)) states that R is a symmetric relation, where x and y are variables; 9y.R(o1, y)
states that there is an (unknown) object which is related to object o1 through R. For sim-
plicity, without loss of generality, we assume that all logical sentences of L are in prenex
conjunctive, skolemised normal form [16], e.g. a sentence 8x(A(x) ! 9yR(x, y)) is
transformed into an equivalent clause ¬A(x) _ R(x, f(x)), where f is a new function
symbol.

As for the semantics of L, we deviate from the standard abstract semantics of FOL,
and we propose a concrete semantics with sentences interpreted as tuples of real num-
bers. To emphasise the fact that L is interpreted in a “real” world, we use the term
(semantic) grounding, denoted by G, instead of the more standard interpretation2.

– G associates an n-tuple of real numbers G(t) to any closed term t of L; intuitively
G(t) is the set of numeric features of the object denoted by t.

– G associates a real number in the interval [0, 1] to each clause � of L. Intuitively,
G(�) represents one’s confidence in the truth of �; the higher the value, the higher
the confidence.

A grounding is specified only for the elements of the signature of L. The grounding of
terms and clauses is defined inductively, as follows.

Definition 1. A grounding G for a first order language L is a function from the signa-
ture of L to the real numbers that satisfies the following conditions:

1. G(c) 2 Rn for every constant symbol c 2 C;
2. G(f) 2 Rn·↵(f) �! Rn for every f 2 F;

2 In logic, the term “grounding” indicates the operation of replacing the variables of a term/for-
mula with constants. To avoid confusion, we use the term “instantiation” for this.

3. G(P) 2 Rn·↵(R) �! [0, 1] for every P 2 P;

A grounding G is inductively extended to all the closed terms and clauses, as follows:

G(f(t1, . . . , tm)) = G(f)(G(t1), . . . ,G(tm))

G(P (t1, . . . , tm)) = G(P)(G(t1), . . . ,G(tm))

G(¬P (t1, . . . , tm)) = 1� G(P (t1, . . . , tm))

G(�1 _ · · · _ �
k

) = µ(G(�1), . . . ,G(�k

))

where µ is an s-norm operator, also known as a t-co-norm operator (i.e. the dual of some
t-norm operator). 3

Example 1. Suppose that O = {o1, o2, o3} is a set of documents defined on a finite dic-
tionary D = {w1, ..., wn

} of n words. Let L be the language that contains the binary
function symbol concat(x, y) denoting the document resulting from the concatenation
of documents x with y. Let L contain also the binary predicate Sim which is sup-
posed to be true if document x is deemed to be similar to document y. An example
of grounding is the one that associates to each document its bag-of-words vector [7].
As a consequence, a natural grounding of the concat function would be the sum of
the vectors, and of the Sim predicate, the cosine similarity between the vectors. More
formally:

– G(o
i

) = hno

i

w1
, . . . , no

i

w

n

i, where nd

w

is the number of occurrences of word w in
document d;

– if v,u 2 Rn, G(concat)(u,v) = u+ v;
– if v,u 2 Rn, G(Sim)(u,v) = u·v

||u||||v|| .

For instance, if the three documents are o1 = “John studies logic and plays football”, o2
= “Mary plays football and logic games”, o3 = “John and Mary play football and study
logic together”, and W={John, Mary, and, football, game, logic, play, study, together}
then the following are examples of the grounding of terms, atomic formulas and clauses.

G(o1) = h1, 0, 1, 1, 0, 1, 1, 1, 0i
G(o2) = h0, 1, 1, 1, 1, 1, 1, 0, 0i
G(o3) = h1, 1, 2, 1, 0, 1, 1, 1, 1i

G(concat(o1, o2)) = G(o1) + G(o2) = h1, 1, 2, 2, 1, 2, 2, 1, 0i

G(Sim(concat(o1, o2), o3) =
G(concat(o1, o2)) · G(o3)

||G(concat(o1, o2))|| · ||G(o3)||
⇡ 13

14.83
⇡ 0.88

G(Sim(o1, o3) _ Sim(o2, o3)) = µ
max

(G(Sim(o1, o3),G(Sim(o2, o3))

⇡ max(0.86, 0.73) = 0.86
3 Examples of t-norms which can be chosen here are Lukasiewicz, product, and Gödel.

Lukasiewicz s-norm is defined as µ

Luk

(x, y) = min(x + y, 1); Product s-norm is defined
as µ

Pr

(x, y) = x+ y � x · y; Gödel s-norm is defined as µ
max

(x, y) = max(x, y).

3 Learning as approximate satisfiability

We start by defining ground theory and their satisfiability.

Definition 2 (Satisfiability). Let � be a closed clause in L, G a grounding, and v 
w 2 [0, 1]. We say that G satisfies � in the confidence interval [v, w], written G |=w

v

�,
if v  G(�)  w.

A partial grounding, denoted by ˆG, is a grounding that is defined on a subset of the
signature of L. A grounded theory is a set of clauses in the language of L and partial
grounding ˆG.

Definition 3 (Grounded Theory). A grounded theory (GT) is a pair hK, ˆGi where K
is a set of pairs h[v, w],�(x)i, where �(x) is a clause of L containing the set x of
free variables, and [v, w] ✓ [0, 1] is an interval contained in [0, 1], and ˆG is a partial
grounding.

Definition 4 (Satisfiability of a Grounded Theory). A GT hK, ˆGi is satisfiabile if
there exists a grounding G, which extends ˆG such that for all h[v, w],�(x)i 2 K and
any tuple t of closed terms, G |=w

v

�(t).

From the previous definiiton it follows that checking if a GT hK, ˆGi is satisfiable
amounts to seaching for an extension of the partial grounding ˆG in the space of all
possible groundings, such that all the instantiations of the clauses in K are satisfied
w.r.t. the specified interval. Clearly this is unfeasible from a practical point of view.
As is usual, we must restrict both the space of grounding and clause instantiations.
Let us consider each in turn: To check satisfiability on a subset of all the functions on
real numbers, recall that a grounding should capture a latent correlation between the
quantitative attributes of an object and its relational properties4. In particular, we are
interested in searching within a specific class of functions, in this paper based on tensor
networks, although other family of functions can be considered. To limit the number
of clause instantiations, which in general might be infinite since L admits function
symbols, the usual approach is to consider the instantiations of each clause up to a
certain depth [3].

When a grounded theory hK, ˆGi is inconsitent, that is, there is no grounding G that
satisfies it, we are interested in finding a grounding which satisfies as much as possible
of hK, ˆGi. For any h[v, w],�i 2 K we want to find a grounding G that minimizes the
satisfiability error. An error occurs when a grounding G assigns a value G(�) to a clause
� which is outside the interval [v, w] prescribed by K. The measure of this error can be
defined as the minimal distance between the points in the interval [v, w] and G(�):

Loss(G, h[v, w],�i) = |x� G(�)|, v  x  w (1)

4 For example, whether a document is classified as from the field of Artificial Intelligence (AI)
depends on its bag-of-words grounding. If the language L contains the unary predicate AI(x)

standing for “x is a paper about AI” then the grounding of AI(x), which is a function from
bag-of-words vectors to [0,1], should assign values close to 1 to the vectors which are close
semantically to AI . Furthermore, if two vectors are similar (e.g. according to the cosine simi-
larity measure) then their grounding should be similar.

Notice that if G(�) 2 [v, w], Loss(G,�) = 0.
The above gives rise to the following definition of approximate satisfiability w.r.t. a

family G of grounding functions on the language L.

Definition 5 (Approximate satisfiability). Let hK, ˆGi be a grounded theory and K0 a
finite subset of the instantiations of the clauses in K, i.e.

K0 ✓ {h[v, w],�(t)i} | h[v, w],�(x)i 2 K and t is any n-tuple of closed terms.}

Let G be a family of grounding functions. We define the best satisfiability problem as
the problem of finding an extensions G⇤ of ˆG in G that minimizes the satisfiability error
on the set K0, that is:

G⇤
= argmin

Ĝ✓G2G

X

h[v,w],�(t)i2K0

Loss(G, h[v, w],�(t)i)

4 Implementing Real Logic in Tensor Networks

Specific instances of Real Logic can be obtained by selectiong the space G of ground-
ings and the specific s-norm for the interpretation of disjunction. In this section, we
describe a realization of real logic where G is the space of real tensor transformations
of order k (where k is a parameter). In this space, function symbols are interpreted
as linear transformations. More precisely, if f is a function symbol of arity m and
v1, . . . ,vm

2 Rn are real vectors corresponding to the grounding of m terms then
G(f)(v1, . . . ,vm

) can be written as:

G(f)(v1, . . . ,vm

) = M
f

v +N
f

for some n⇥mn matrix M
f

and n-vector N
f

, where v = hv1, . . . ,vn

i.
The grounding of m-ary predicate P , G(P), is defined as a generalization of the

neural tensor network [26] (which has been shown effective at knowledge compilation
in the presence of simple logical constraints), as a function from Rmn to [0, 1], as fol-
lows:

G(P) = �
⇣
uT

P

tanh

⇣
v

TW
[1:k]
P

v + V
P

v +B
P

⌘⌘
(2)

where W
[1:k]
P

is a 3-D tensor in Rmn⇥mn⇥k, V
P

is a matrix in Rk⇥mn, and B
P

is a
vector in Rk, and � is the sigmoid function. With this encoding, the grounding (i.e.
truth-value) of a clause can be determined by a neural network which first computes
the grounding of the literals contained in the clause, and then combines them using
the specific s-norm. An example of tensor network for ¬P (x, y) ! A(y) is shown in
Figure 1. This architecture is a generalization of the structure proposed in [26], that
has been shown rather effective for the task of knowledge compilation, also in presence
of simple logical constraints. In the above tensor network formulation, W⇤, V⇤, B⇤ and
u⇤ with ⇤ 2 {P,A} are parameters to be learned by minimizing the loss function or,
equivalently, to maximize the satisfiability of the clause P (x, y) ! A(y).

G(¬P) G(A)

v = hv1, . . . , v

n

i u = hu1, . . . , u

n

i

W

1
P

W

2
P

V

1
P

V

2
P

B

1
P

B

2
P

+ +

th th

u

P

1 � �

W

1
A

W

2
A

V

1
A

V

2
A

B

1
A

B

2
A

+ +

th th

u

A

�

max

G(P (v,u) ! A(u)

Fig. 1. Tensor net for P (x, y) ! A(y), with G(x) = v and G(y) = u and k = 2.

5 An Example of Knowledge Completion

Logic Tensor Networks have been implemented as a Python library called ltn using
Google’s TENSORFLOWTM . To test our idea, in this section we use the well-known
friends and smokers5 example [24] to illustrate the task of knowledge completion in
ltn. There are 14 people divided into two groups {a, b, . . . , h} and {i, j, . . . , n}.
Within each group of people we have complete knowledge of their smoking habits.
In the first group, we have complete knowledge of who has and does not have can-
cer. In the second group, this is not known for any of the persons. Knowledge about
the friendship relation is complete within each group only if symmetry of friendship is
assumed. Otherwise, it is imcomplete in that it may be known that, e.g., a is a friend
of b, but not known whether b is a friend of a. Finally, there is also general knowledge
about smoking, friendship and cancer, namely, that smoking causes cancer, friendship is
normally a symmetric and anti-reflexive relation, everyone has a friend, and that smok-
ing propagates (either actively or passively) among friends. All this knowledge can be
represented by the knowledge-bases shown in Figure 2.

The facts contained in the knowledge-bases should have different degrees of truth,
and this is not known. Otherwise, the combined knowledge-base would be inconsistent
(it would deduce e.g. S(b) and ¬S(b)). Our main task is to complete the knowledge-
base (KB), that is: (i) find the degree of truth of the facts contained in KB, (ii) find
a truth-value for all the missing facts, e.g. C(i), (iii) find the grounding of each con-
stant symbol a, ..., n.6 To answer (i)-(iii), we use ltn to find a grounding that best

5 Normally, a probabilistic approach is taken to solve this problem, and one that requires instan-
tiating all clauses to remove variables, essentially turning the problem into a propositional one;
ltn takes a different approach.

6 Notice how no grounding is provided about the signature of the knowledge-base.

S(a), S(e), S(f), S(g),

¬S(b), ¬S(c), ¬S(d), ¬S(g), ¬S(h),
F (a, b), F (a, e), F (a, f), F (a, g), F (b, c),

F (c, d), F (e, f), F (g, h),

¬F (a, c), ¬F (a, d), ¬F (a, h), ¬F (b, d), ¬F (b, e),

¬F (b, f), ¬F (b, g), ¬F (b, h), ¬F (c, e), ¬F (c, f),

¬F (c, g), ¬F (c, h), ¬F (d, e), ¬F (d, f), ¬F (d, g),

¬F (d, h), ¬F (e, g), ¬F (e, h), ¬F (f, g), ¬F (f, h),

C(a), C(e),

¬C(b), ¬C(c), ¬C(d), ¬C(f), ¬C(g), ¬C(h)

KSFC

a...h

S(i), S(n),

¬S(j), ¬S(k),
¬S(l), ¬S(m),

F (i, j), F (i,m),

F (k, l), F (m,n),

¬F (i, k), ¬F (i, l),

¬F (i, n), ¬F (j, k),

¬F (j, l), ¬F (j,m),

¬F (j, n), ¬F (l, n),

¬F (k,m), ¬F (l,m)

KSF

i...n

8x¬F (x, x),

8xy(F (x, y) ! F (y, x)),

8x9yF (x, y),

8xy(S(x) ^ F (x, y) ! S(y)),

8x(S(x) ! C(x))

KSFC

Fig. 2. Knowledge-bases for the friends-and-smokers example.

approximates the complete KB. We start by assuming that all the facts contained in
the knowledge-base are true (i.e. have degree of truth 1). To show the role of back-
ground knolwedge in the learning-inference process, we run two experiments. In the
first (exp1), we seek to complete a KB consisting of only factual knowledge: K

exp1 =

KSFC

a...h

[KSF

i...n

. In the second (exp1), we also include background knowledge, that is:
K

exp2 = K
exp1 [KSFC .

We confgure the network as follows: each constant (i.e. person) can have up to 30
real-valued features. We set the number of layers k in the tensor network to 10, and
the regularization parameter7 � = 1

�10. For the purpose of illustration, we use the
Lukasiewicz t-norm with s-norm µ(a, b) = min(1, a + b), and use the harmonic mean
as aggregation operator. An estimation of the optimal grounding is obtained after 5,000
runs of the RMSProp learning algorithm [27] available in TENSORFLOWTM .

The results of the two experiments are reported in Table 1. For readability, we
use boldface for truth-values greater than 0.5. The truth-values of the facts listed in
a knowledge-base are highlighted with the same background color of the knowledge-
base in Figure 2. The values with white background are the result of the knowledge
completion produced by the LTN learning-inference procedure. To evaluate the quality
of the results, one has to check whether (i) the truth-values of the facts listed in a KB are
indeed close to 1.0, and (ii) the truth-values associated with knowledge completion cor-
respond to expectation. An initial analysis shows that the LTN associated with K

exp1

produces the same facts as K
exp1 itself. In other words, the LTN fits the data. How-

ever, the LTN also learns to infer additional positive and negative facts about F and C
not derivable from K

exp1 by pure logical reasoning; for example: F (c, b), F (g, b) and
¬F (b, a). These facts are derived by exploiting similarities between the groundings of

7 A smoothing factor �||⌦||22 is added to the loss function to create a preference for learned
parameters with a lower absolute value.

F

S C a b c d e f g h

a 1.00 1.00 0.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00
b 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
c 0.00 0.00 0.00 0.82 0.00 1.00 0.00 0.00 0.00 0.00
d 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00
e 1.00 1.00 0.00 0.33 0.21 0.00 0.00 1.00 0.00 0.00
f 1.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00
g 1.00 0.00 0.03 1.00 1.00 1.00 0.11 1.00 0.00 1.00

h 0.00 0.00 0.00 0.23 0.01 0.14 0.00 0.02 0.00 0.00

F

S C i j k l m n

i 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00
j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
k 0.00 0.00 0.10 1.00 0.00 1.00 0.00 0.00
l 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00
m 0.00 0.03 1.00 1.00 0.12 1.00 0.00 1.00

n 1.00 0.01 0.00 0.98 0.00 0.01 0.02 0.00

Learning and reasoning on K
exp1 = KSFC

a...h

[KSF

i...n

F

S C a b c d e f g h

a 0.84 0.87 0.02 0.95 0.01 0.03 0.93 0.97 0.98 0.01
b 0.13 0.16 0.45 0.01 0.97 0.04 0.02 0.03 0.06 0.03
c 0.13 0.15 0.02 0.94 0.11 0.99 0.03 0.16 0.15 0.15
d 0.14 0.15 0.01 0.06 0.88 0.08 0.01 0.03 0.07 0.02
e 0.84 0.85 0.32 0.06 0.05 0.03 0.04 0.97 0.07 0.06
f 0.81 0.19 0.34 0.11 0.08 0.04 0.42 0.08 0.06 0.05
g 0.82 0.19 0.81 0.26 0.19 0.30 0.06 0.28 0.00 0.94

h 0.14 0.17 0.05 0.25 0.26 0.16 0.20 0.14 0.72 0.01

F

S C i j k l m n

i 0.83 0.86 0.02 0.91 0.01 0.03 0.97 0.01
j 0.19 0.22 0.73 0.03 0.00 0.04 0.02 0.05
k 0.14 0.34 0.17 0.07 0.04 0.97 0.04 0.02
l 0.16 0.19 0.11 0.12 0.15 0.06 0.05 0.03
m 0.14 0.17 0.96 0.07 0.02 0.11 0.00 0.92

n 0.84 0.86 0.13 0.28 0.01 0.24 0.69 0.02

a, . . . , h,i, . . . , n
8x¬F (x, x) 0.98

8xy(F (x, y) ! F (y, x)) 0.90 , 0.90

8x(S(x) ! C(x)) 0.77

8x(S(x) ^ F (x, y) ! S(y)) 0.96 , 0.92

8x9y(F (x, y)) 1.0

Learning and reasoning on K
exp2 = KSFC

a...h

[KSF

i...n

[KSFC

Table 1.

the constants generated by the LTN. For instance, G(c) and G(g) happen to present a
high cosine similarity measure. As a result, facts about the friendship relations of c af-
fect the friendship relations of g and vice-versa, for instance F (c, b) and F (g, b). The
level of satisfiability associated with K

exp1 ⇡ 1, which indicates that K
exp1 is classi-

cally satisfiable.
The results of the second experiment show that more facts can be learned with the

inclusion of background knowledge. For example, the LTN now predicts that C(i) and
C(n) are true. Similarly, from the symmetry of the friendship relation, the LTN con-
cludes that m is a friend of i, as expected. In fact, all the axioms in the generic back-
ground knowledge KSFC are satisfied with a degree of satisfiability higher than 90%,
apart from the smoking causes cancer axiom - which is responsible for the classical
inconsistency since in the data f and g smoke and do not have cancer -, which has a
degree of satisfiability of 77%.

6 Related work

In his recent note, [15], Guha advocates the need for a new model theory for dis-
tributed representations (such as those based on embeddings). The note sketches a pro-
posal, where terms and (binary) predicates are all interpreted as points/vectors in an
n-dimensional real space. The computation of the truth-value of the atomic formulae
P (t1, . . . , tn) is obtained by comparing the projections of the vector associated to each

t
i

with that associated to P
i

. Real logic shares with [15] the idea that terms must be
interpreted in a geometric space. It has, however, a different (and more general) in-
terpretation of functions and predicate symbols. Real logic is more general because
the semantics proposed in [15] can be implemented within an ltn with a single layer
(k = 1), since the operation of projection and comparison necessary to compute the
truth-value of P (t1, . . . , tm) can be encoded within an nm ⇥ nm matrix W with the
constraint that hG(t1), . . . ,G(tn)iT W hG(t1), . . . ,G(tn)i  �, which can be encoded
easily in ltn.

Real logic is orthogonal to the approach taken by (Hybrid) Markov Logic Networks
(MLNs) and its variations [24, 29, 22]. In MLNs, the level of truth of a formula is de-
termined by the number of models that satisfy the formula: the more models, the higher
the degree of truth. Hybrid MLNs introduce a dependency from the real features asso-
ciated to constants, which is given, and not learned. In real logic, instead, the level of
truth of a complex formula is determined by (fuzzy) logical reasoning, and the relations
between the features of different objects is learned through error minimization. Another
difference is that MLNs work under the closed world assumption, while Real Logic is
open domain. Much work has been done also on neuro-fuzzy approaches [19]. These
are essentially propositional while real logic is first-order.

Bayesian logic (BLOG) [20] is open domain, and in this respect similar to real
logic and LTNs. But, instead of taking an explicit probabilistic approach, LTNs draw
from the efficient approach used by tensor networks for knowledge graphs, as already
discussed. LTNs can have a probabilistic interpretation but this is not a requirement.
Other statistical AI and probabilistic approaches such as lifted inference fall into this
category, including probabilistic variations of inductive logic programming (ILP) [23],
which are normally restricted to Horn clauses. Metainterpretive ILP [21], together with
BLOG, seem closer to LTNs in what concerns the knowledge representation language,
but do not explore the benefits of tensor networks for computational efficiency.

An approach for embedding logical knowledge onto data for the purpose of rela-
tional learning, similar to Real Logic, is presented in [25]. Real Logic and [25] share
the idea of interpreting a logical alphabet in an n-dimensional real space. Termino-
logically, the term “grounding” in Real Logic corresponds to “embeddings” in [25].
However, there are several differences. First, [25] uses function-free langauges, while
we provide also groundings for functional symbols. Second, the model used to com-
pute the truth-values of atomic formulas adopted in [25] is a special case of the more
general model proposed in this paper (as described in Eq. (2)). Finally, the semantics
of the universal and existential quantifiers adopted in [25] is based on the closed-world
assumption (CWA), i.e. universally (respectively, existentially) quantified formulas are
reduced to the finite conjunctions (respectively, disjunctions) of all of their possible in-
stantiations; Real Logic does not make the CWA. Furthermore, Real Logic does not
assume a specific t-norm.

As in [11], LTN is a framework for learning in the presence of logical constraints.
LTNs share with [11] the idea that logical constraints and training examples can be
treated uniformly as supervisions of a learning algorithm. LTN introduces two novel-
ties: first, in LTN existential quantifiers are not grounded into a finite disjunction, but
are scolemized. In other words, CWA is not required, and existentially quantified formu-

las can be satisfied by “new individuals”. Second, LTN allows one to generate data for
prediction. For instance, if a grounded theory contains the formula 8x9yR(x, y), LTN
generates a real function (corresponding to the grounding of the Skolem function intro-
duced by the formula) which for every vector v returns the feature vector f(v), which
can be intuitively interpreted as being the set of features of a typical object which takes
part in relation R with the object having features equal to v.

Finally, related work in the domain of neural-symbolic computing and neural net-
work fibring [10] has sought to combine neural networks with ILP to gain efficiency
[14] and other forms of knowledge representation, such as propositional modal logic
and logic programming. The above are more tightly-coupled approaches. In contrast,
LTNs use a richer FOL language, exploit the benefits of knowledge compilation and
tensor networks within a more loosely- coupled approach, and might even offer an ad-
equate representation of equality in logic. Experimental evaluations and comparison
with other neural-symbolic approaches are desirable though, including the latest devel-
opments in the field, a good snapshot of which can be found in [1].

7 Conclusion and future work

We have proposed Real Logic: a uniform framework for learning and reasoning. Ap-
proximate satisfiability is defined as a learning task with both knowledge and data be-
ing mapped onto real-valued vectors. With an inference-as-learning approach, relational
knowledge constraints and state-of-the-art data-driven approaches can be integrated.
We showed how real logic can be implemented in deep tensor networks, which we call
Logic Tensor Networks (LTNs), and applied efficiently to knowledge completion and
data prediction tasks. As future work, we will make the implementation of LTN avail-
able in TENSORFLOWTM and apply it to large-scale experiments and relational learning
benchmarks for comparison with statistical relational learning, neural-symbolic com-
puting, and (probabilistic) inductive logic programming approaches.

References

1. Cognitive Computation: Integrating Neural and Symbolic Approaches, Workshop at NIPS
2015, Montreal, Canada, April 2016. CEUR-WS 1583.

2. Knowledge Representation and Reasoning: Integrating Symbolic and Neural Approaches,
AAAI Spring Symposium, Stanford University, CA, USA, March 2015.

3. Dimitris Achlioptas. Random satisfiability. In Handbook of Satisfiability, pages 245–270.
2009.

4. Leon Barrett, Jerome Feldman, and Liam MacDermed. A (somewhat) new solution to the
variable binding problem. Neural Computation, 20(9):2361–2378, 2008.

5. Yoshua Bengio. Learning deep architectures for ai. Found. Trends Mach. Learn., 2(1):1–127,
January 2009.

6. M. Bergmann. An Introduction to Many-Valued and Fuzzy Logic: Semantics, Algebras, and
Derivation Systems. Cambridge University Press, 2008.

7. David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J. Mach.
Learn. Res., 3:993–1022, March 2003.

8. Léon Bottou. From machine learning to machine reasoning. Technical report,
arXiv.1102.1808, February 2011.

9. Artur S. d’Avila Garcez, Marco Gori, Pascal Hitzler, and Luı́s C. Lamb. Neural-symbolic
learning and reasoning (dagstuhl seminar 14381). Dagstuhl Reports, 4(9):50–84, 2014.

10. Artur S. d’Avila Garcez, Luı́s C. Lamb, and Dov M. Gabbay. Neural-Symbolic Cognitive
Reasoning. Cognitive Technologies. Springer, 2009.

11. Michelangelo Diligenti, Marco Gori, Marco Maggini, and Leonardo Rigutini. Bridging logic
and kernel machines. Machine Learning, 86(1):57–88, 2012.

12. David Silver et al. Mastering the game of go with deep neural networks and tree search.
Nature, 529:484–503, 2016.

13. Martı́n Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

14. Manoel V. M. França, Gerson Zaverucha, and Artur S. d’Avila Garcez. Fast relational learn-
ing using bottom clause propositionalization with artificial neural networks. Machine Learn-
ing, 94(1):81–104, 2014.

15. Ramanathan Guha. Towards a model theory for distributed representations. In 2015 AAAI
Spring Symposium Series, 2015.

16. Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Reasoning About
Systems. Cambridge University Press, New York, NY, USA, 2004.

17. Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. Computer,
36(1):41–50, January 2003.

18. Douwe Kiela and Léon Bottou. Learning image embeddings using convolutional neural net-
works for improved multi-modal semantics. In Proceedings of EMNLP 2014, Doha, Qatar,
2014.

19. Bart Kosko. Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Ma-
chine Intelligence. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

20. Brian Milch, Bhaskara Marthi, Stuart J. Russell, David Sontag, Daniel L. Ong, and Andrey
Kolobov. BLOG: probabilistic models with unknown objects. In IJCAI-05, Proceedings
of the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scot-
land, UK, July 30-August 5, 2005, pages 1352–1359, 2005.

21. Stephen H. Muggleton, Dianhuan Lin, and Alireza Tamaddoni-Nezhad. Meta-interpretive
learning of higher-order dyadic datalog: predicate invention revisited. Machine Learning,
100(1):49–73, 2015.

22. Aniruddh Nath and Pedro M. Domingos. Learning relational sum-product networks. In
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30,
2015, Austin, Texas, USA., pages 2878–2886, 2015.

23. Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole. Statistical Relational
Artificial Intelligence: Logic, Probability, and Computation. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publishers, 2016.

24. Matthew Richardson and Pedro Domingos. Markov logic networks. Mach. Learn., 62(1-
2):107–136, February 2006.

25. Tim Rocktaschel, Sameer Singh, and Sebastian Riedel. Injecting logical background knowl-
edge into embeddings for relation extraction. In Annual Conference of the North American
Chapter of the Association for Computational Linguistics (NAACL), June 2015.

26. Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng. Reasoning With
Neural Tensor Networks For Knowledge Base Completion. In Advances in Neural Informa-
tion Processing Systems 26. 2013.

27. T. Tieleman and G. Hinton. Lecture 6.5 - RMSProp, COURSERA: Neural networks for
machine learning. Technical report, 2012.

28. Leslie G. Valiant. Robust logics. In Proceedings of the Thirty-first Annual ACM Symposium
on Theory of Computing, STOC ’99, pages 642–651, New York, NY, USA, 1999. ACM.

29. Jue Wang and Pedro M. Domingos. Hybrid markov logic networks. In Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA,
July 13-17, 2008, pages 1106–1111, 2008.

Learning sequential control in a Neural Blackboard
Architecture for in situ concept reasoning

Frank van der Velde
University of Twente, CPE-CTIT; IOP, Leiden University, The Netherlands

f.vandervelde@utwente.nl

Abstract. Simulations are presented and discussed of learning sequential control in a Neural
Blackboard Architecture (NBA) for in situ concept-based reasoning. Sequential control is learned
in a reservoir network, consisting of columns with neural circuits. This allows the reservoir to
control the dynamics of processing by responding to information given by questions and the
activations in the NBA. The in situ nature of concept representation directly influences the
reasoning process and learning in the architecture.

Keywords. Learning x Neural blackboard architecture x In situ concepts x Reasoning x Reservoir
x Wilson-Cowan dynamics

1 Introduction
Neural representation and processing of symbol-like structures as presented here takes
its inspiration from the observation that concept representations in the brain are ‘in situ’,
in line with the neural assemblies as proposed by Hebb ([1]). Neural assemblies, as
Hebb argued, will develop over time when neurons that process information about, for
example, a concept become interconnected. Such concept representations could be
distributed, but parts of the assembly could also consist of more local representations.
They will generally consist of neurons involved in processing information but also of
neurons involved in actions. In this way, in situ concepts representations are always
grounded in perception or action, so that the neural connection structure underlying a
concept is determined by both its ‘incoming’ (perception-based) connections and its
‘outgoing’ (action-generating) connections [2].

The in situ nature of neuronal concept representations imposes constraints on the
way they can be combined to represent and process more complex forms of information.
However, complex conceptual structures (e.g., sentences with hierarchical structures)
can be represented and processed when the neural assemblies underlying in situ concept
representation are embedded in a ‘Neural Blackboard Architecture’ or NBA [3].

In general, “in-situ concept-based computing” would be achieved by embedding in
situ concepts in several NBAs, each needed for a specific form of processing.
Blackboards are also used in computer domains, e.g., to store arbitrary forms of
(symbolic) information. NBAs as intended here, however, are fundamentally different.
They possess structural information, (e.g., related to sentence structures as in [3]), and
are implemented with dedicated structures (e.g., neural circuits, as in the brain). In this
way they cannot store arbitrary information, but they can process specific forms of
(high-level cognitive) information, e.g., by the interactions between the structured
representations in the blackboards. Fig 1. illustrates that there will be NBAs for sentence

structures, phonological structures (e.g., forming new words), sequential structures based
on in situ concept representations, relation structures as used in reasoning, and
potentially other NBAs (blackboards) as well. The interaction between these NBAs
derives from the in situ concept representations they share. For example, a word
(concept) would be shared by the sentence, phonology, sequential and relation
blackboards (and potentially more). In turn, concepts are also related to each other in
several “feature spaces”, which can influence processing in the NBAs as well.

Figure 1. Overview of in situ concept-based computing with Neural Blackboard Architectures (NBAs).

The NBA in [3] can account for sentence structure and processing, including
sentence learning [4] and examples of ambiguity resolution and garden path modelling
[5]. A recent extension of the NBA approach to symbol-like processing is the NBA for
(basic forms of) reasoning presented in [6], which can be used in basic reasoning
processes, such as BABI reasoning tasks as presented in [7].

Figure 2. (A) BABI task for reasoning (after [7]). (B) Propositions in a relation blackboard (A = agent, O
= object). Grey nodes activated by the question Where is milk?. <localizer> and <location> are concept
features, belonging to feature space.

Fig. 2A presents an example of a BABI reasoning task. A set of relations is given
and a question has to be answered on the basis of these relations (propositions). So, the
question Where is milk? can be answered by first retrieving John drop milk (providing a

location for milk) and then retrieving John go office as the last location of John before
John drop milk. This would provide office as the location of milk. Fig. 2B presents the
representations of these relations in the relation NBA, and the representations activated
by the question Where is milk? are illustrated in grey.

Here, a first set of simulations will be presented and discussed that address the way
NBAs can learn to perform reasoning processes of this kind. This paper focusses on the
fundamental issue of whether questions can retrieve information needed for reasoning in
NBAs. Simulations of other aspects of the NBAs and reasoning process are outside the
scope of this paper, or under development (e.g., the selection of the more recent
activated relation in the sequence blackboard, which is assumed here). A further
description of how BABI tasks can be solved in NBAs is presented in [6].

2 Learning control of reasoning in an NBA
A key element of in situ concept processing in NBAs is that the information provided by
a question is directly used in the activation of the concepts involved. In Fig. 2B, for
example, the question Where is milk? directly activates the in situ concepts is and milk.
In turn, they will activate their features (e.g. <localizer> for is) in feature space. Due to
the activation of the in situ concept milk, all relations in Fig. 2A in which milk occurs
can be activated as well, because they share the same in situ concept (milk). So, John
drop milk and John get milk can be directly activated in this way.

Figure 3. (A). Conditional connection in Fig. 2B. (B) Conditional connections with disinhibition circuits .
(C) A connection matrix of conditional connections for binding.

Activation of concept structures (here relations) in an NBA depends on the nature of
the structure representations, and the control and binding circuits in the NBA. In [3] an
extensive discussion of these is given for the sentence NBA, but they are the same in the
relation NBA of Fig. 2. Fig. 3 illustrates a basic overview. Each connection in Fig. 2B
represents a conditional connection. These connections can operate only when they are
activated. In this way, relations can be represented and processed in NBAs (instead of
just associations as with unconditional connections). A conditional connection can be
implemented with a disinhibition circuit, as illustrated in Fig. 3B. The circuit can be
activated by a control circuit or by a memory circuit. The latter produces (temporal)

bindings in the NBA. The process of binding and (re)activation is determined by the
control circuits.

For example, the binding and (re)activation of John drop milk in Fig. 2B proceeds as
follows. First, John is activated. To achieve the representation of John as agent, John
and an (arbitrary) Agent node in the NBA (e.g., A4) are bound by activating the memory
circuit between them ([3]). This results in the binding of John and A4. In the same way,
drop binds to V4 and milk as object to O4. Then, a control circuit activates the
conditional connections between A4 and V4 to represent John drop. To achieve a
binding between arbitrary A and O nodes, all A and O nodes are connected to each other
in a connection matrix, as illustrated in Fig. 3C. A connection matrix is a matrix of
circuits (‘columns’) that regulate the binding process. To bind A4 with V4, the control
circuit activates the conditional connections between A4 and V4 and their corresponding
column in the connection matrix. This, in turn results in the activation of the memory
circuit in that column. As long as this circuit remains active (with sustained or ‘delay’
activation), A4 and V4 are bound, even when they themselves are deactivated again.
This binding process is used for all bindings in the NBA.

The relation John drop milk can be reactivated by activating one of the in situ
concepts involved and the required conditional connections. For example, the question
Where is milk? activates milk. Because of their binding with milk, O4 (and O2) are
activated as well. By activating the conditional connections for Object between Object
and Verb nodes, O4 activates V4, which activates drop. A4 can be activated by
activating (enabling) the Agent conditional connections between Verb nodes and Agent
nodes. This results in the reactivation of John drop milk. In Fig. 2B, this process also
results in the reactivation of John get milk, because these binding are active as well (i.e.,
this relation is also stored in the NBA). A distinction between these two relations can be
made by a sequential ordering in a sequence blackboard (assumed here, e.g., see [6]).

The reactivation of stored relations is crucial for a reasoning process as illustrated in
Fig. 2A. For example, Where is milk? can be answered by first activating John drop milk
and John get milk, using the activation of milk by the question. Then by selecting John
drop milk as the more recent relation. In this case, drop indicates a location for milk,
given by the <localizer> feature of drop in Fig. 2. This would initiate a second question
Where is agent-drop?, i.e., Where is John? here. This question would activate John go
office, selected as the most recent location of John. This produces office as the location
of milk. In other words, new questions in the reasoning process derive from activations
in the NBA initiated by previous questions.

Hence, the activations initiated by the (first) question and the resulting interactions
with the blackboard determine the process of answering questions like Where is milk?
Here, this interaction is simulated by using a control network to recognize the (first)
question and initiate the required interaction (e.g., further questions) with the
blackboard. The control network consists of a form of reservoir computing (e.g., [8]).

2.1 Reservoir for control
A reservoir is a set of neurons or ‘nodes’ that are sparsely interconnected in a random
(fixed) fashion. Also, the nodes are connected (randomly) to input neurons providing

external information. A reservoir can learn to activate specific output neurons in
response to a sequence presented to it. In this way, they can learn to process and
recognize sequential information [8].

Hinaut and Dominey [9] used a reservoir to recognize sets of sentences. However, in
a reservoir the nodes activate each other based on their (node) activation dynamics.
When a sequence with a specific sequential dynamics is presented to the reservoir, it can
learn to ‘resonate’ to the external dynamics because that is predictable [8]. This is
typically more difficult for language, because timing differences between words can
vary. In [9] this was solved by adjusting the dynamics of the reservoir nodes to regular
word presentation timing. Here, however, the sequence to be learned is not only
determined by the presented question but also by the interactions with and within the
neural blackboard, which could vary given the amount of information stored and
processed in it. So, a direct adjustment of timing of node activation is not possible.
Therefore, the reservoir presented and simulated here is more complex.

Fig. 4 illustrates that the reservoir consists of columns, which in turn consist of
neural circuits. The sequential activation as produced by the reservoir is given by the
‘sequence’ (S) nodes. They are randomly and sparsely connected to each other, in a
fixed manner. However, S nodes do not directly activate each other. Instead, an active
node Si will activate a ‘delay’ population in the column of a node Sj to which it is
connected. The delay population remains active (unless inhibited). It activates Sj but also
an inhibitory node i, which inhibits Sj. In this way, the timing of the sequence in the
reservoir is under control. Sj can be activated only when node i is inhibited. As
indicated, this will happen when an ‘Item’ node activates another inhibitory node that
inhibits i. When this happens, Sj will be activated and it will in turn activate other S
nodes in the sequence in the same manner.

Figure 4. Reservoir of columns. Circles and ovals represent neural populations. Double lined ovals
remain active (sustained or delay activity). I = inhibition, e = excitation. S = sequence. Dashed
connections are modifiable by learning (e.g. LTP).

Item nodes represent the external inputs to the reservoir. Here, they consist of
sentence information and/or information derived from the blackboard. Hence, the
sequential dynamics produced by the reservoir is under control by the information given
by the question and the interactions produced in the blackboard.

The aim of the reasoning NBA is to simulate and learn reasoning in this way. That is,
the reservoir will learn to recognize sequential information given by the question and by
activations in the blackboard to initiate new activations in the blackboard, until the
question can be answered. Learning can be achieved by the adaptive connections
between S nodes and nodes that control the binding and (re)activation process in the
blackboard. So, Sj could learn to activate a specific control in the blackboard, such as the
control to activate the Agent or Object conditional connections.

Here, basic aspects of this process are simulated for answering the questions Where
is John and Where is milk? in the task illustrated in Fig. 2A.

3 Simulation of reservoir activity
All the populations in the NBA are modelled with Wilson Cowan population dynamics
[10]. Each population consist of groups of interacting excitatory (E) in inhibitory (I)
neurons. The behavior of the E and I groups are each modeled with an ODE at
population level. Both ODEs interact and they receive input from outside. A working
memory (or delay) population consists of two interacting populations, say A and B. The
output results from A. The role of B is to sustain the activity by its interaction with A. It
is assumed that B has a lower activation maximum than other populations. This results
in a reduced activity of a working memory population when it relies on delay activity
only (i.e., does not receive input). The E neurons are used for output to other
populations. Populations are excitatory when their output connection has a positive
weight. They are inhibitory when their output connection has a negative weight. All
populations operate with the same parameters and all weights are the same (as in [5]).
The behavior of the populations is simulated with a fourth order Runge Kutta numerical
integration (with h = 0.1).

The question Where is John? is presented to the reservoir word by word. However,
for the reservoir word type and feature information is used. Words like is and go are
represented as <localizer>, words like John and milk are presented as nouns. The
specific words in the questions are used to activate their (in situ) representations in the

backboard. So, the active concept John activates the nodes A4 and A2 in the blackboard.
This provides information that John is the agent in the relations stored in the blackboard.
In turn, this information can be used to learn that the blackboard should provide the
object information related to (bound to) John is.

The reservoir can learn to do this by recognizing the item sequence Where -
<localizer> - noun – Agent and producing the activation of the Object conditional
connections in the blackboard. This will produce the activations of John go kitchen,
John go office, and John go room, from which John go room can be selected as the most
recent, using the sequential blackboard in Fig. 1 (see [6]).

Fig. 5 presents the activations of sets of S nodes in a reservoir of 750 columns with
sparse connectivity in response to the item sequence Where - <localizer> - noun –
Agent. The first three items (Where - <localizer> - noun) are based on the question, the
fourth item (Agent) is derived from the blackboard. Each color represents a different set
of S nodes in the reservoir. The blue set are S nodes that are initially activated by start
nodes (not shown), that respond to the start of a question. They also respond to the item
Where (specifically). However, as the figure shows, some of these nodes also respond to
the other items in the item sequence presented to the reservoir.

The red S nodes are activated by the blue S nodes (columns) and also specifically
respond to the second item <localizer>. But some of them also respond to the other
items at other steps in the sequence. Likewise, the green S nodes specifically respond to
the third item because they are activated by the combination of the active red S nodes
and the item noun. Again, however, some of them respond to other items at other
sequence steps as well. The magenta S nodes specifically respond to the fourth item,
because they are activated by the green S nodes and the item Agent.

The active magenta S nodes could be used to learn that the blackboard should
activate the Object conditional connection, because John (noun) is an Agent and the
question asks for an object bound to that agent (and a localizer word). Here, that would
be possible when the magenta S nodes dominate the activation in the reservoir at the
fourth step. However, a substantial amount of other nodes are active as well. But
reservoir nodes can learn specific responses based on their distributed activation ([9].

But when the activation of S nodes is more specific, such learning could be achieved
by direct adjustments of neural weights (the dashed connections in Fig. 4), which would
allow rapid forms of learning. To achieve more specific activation of S nodes it is

important to look more closely at the activations produced in the columns.
Fig. 6A shows the activations of the red S nodes and the delay populations in their

columns. The delay populations remain active. So, when a new item is presented, some
of the red S nodes respond to that item because it is connected to their column. This
accounts for the repeated activation of some of the S nodes of all color in Fig. 5.

Delay activity can be stopped, however, by a neural circuit illustrated in Fig. 4. To
this end, the S node is connected to a ‘stop’ population (consisting of sustained
activation). When Sj is active it will activate this population. But it will also activate an
inhibitory neuron that prevents the effect of the stop population. The stop population can
inhibit the delay population only when Sj is deactivated, and it continues to do so as long
as it is active. The Sj node is deactivated when the Item node is deactivated, which will
occur with the presentation of a new item in the sequence. It that case, the delay
population ensures the deactivation of the Sj node, which in turn ensures the deactivation
of the delay population.

Fig. 6B shows the effect of stopping the delay activation. After the red S nodes are
deactivated, the delay activation is deactivated as well. This prevents further activation
of the red S nodes. Yet, some of the red S nodes are active at the first step, even though
they are not activated by the start nodes. This activation results from the rapid activation
of their delay nodes by the blue S nodes (Figure 5) and the fact that these red S nodes
also respond to the first item (Where). However, due to their activation at the first step,
these red S nodes are no longer activated at the second step (unlike in Fig. 5) because
their delay populations are deactivated. So, the S nodes in the second step are now
specifically active for the second step in the sequence. Similarly, the first step in the
sequence is now given by the blue S nodes and the red S nodes active at that step. In this
way, specific sets of S nodes are activated at specific steps in the sequence. This allows
for rapid learning by direct synaptic modification.

Fig. 7 shows the results for all S nodes presented in Fig. 5. The colored nodes are
specifically active at the step in the sequence that is related to the item they represent.

Activation after that step is prevented. In some cases, some of the S nodes are active
before that step. In that case, however, they will not be activated again. So, at each step a
specific set of S nodes will be active that uniquely represents the item of that step.
Specifically, the magenta S nodes can learn to produce the activation of Object
conditional connections by direct synaptic modification.

3.1 Learning more complex control
The question Where is John? generates a direct answer by the reactivation of John go
room. The question Where is milk?, however, does not directly produce an answer in this
way. To answer this question, a second representation needs to be activated after John
drop milk. In turn, this requires a longer and more complex sequential sequence to be
learned by the reservoir and a longer interaction process with the blackboard. A reservoir
can indeed learn such a process and interaction with the blackboard to produce the
answer. Here, however, only a few aspects of that can be illustrated.

First, the question Where is milk? generates Object instead of Agent as response
from the blackboard in the fourth step. Yet, the first three steps are the same as with
Where is John?. Fig. 8A illustrates the activation of S nodes in the fourth step of Where
is milk? These nodes are thus activated by the S nodes active at the third step and by the
item Object, derived from the activation of O4 and O2 in the blackboard (Fig. 3). Fig.
8B illustrates the activation of the same S nodes when, at the fourth step, the item Agent
is presented. It is clear that the S nodes selectively respond to the item Object, instead of
Agent. This allows them to learn to activate the Agent conditional connections in the
blackboard, to reactivate the relation John drop milk.

Second, the question Where is milk? gives location information (is) at step two, but it
also requires location information at step five in the process, to retrieve the location of
John after John drop milk has been reactivated. Fig. 9 illustrates the activation in the
reservoir related to the same information at different steps.

The red S nodes in Fig. 9A respond to the first activation of <localizer> in the
process. The cyan S nodes in Fig. 9B respond to the second activation of <localizer> in
the process. That is, these S nodes would all be activated by the active S nodes in the
fourth step and by the item <localizer>. Some of them are already activated in some of
the previous steps, however, which prevents their activation in the fifth step. Hence, the
control (stop) of activation in the reservoir results in a set of S nodes that selectively
respond to the item <localizer> in the fifth step, irrespective of the presence of that item
in a previous step. Such a selective response to repeated activation of item information
will be crucial for the success of learning reasoning in a neural reasoning architecture as
presented here.

5 Conclusions
Simulations of the learning of sequential control in a neural blackboard architecture
(NBA) for reasoning were presented. The NBA is based on in situ concept
representation. This entails that concepts are always represented by the same underlying
neural assemblies (although different parts of them might be activated at different
occasions). The in situ nature of concepts imposes constraints on the ways they can be
used to represent and process complex forms of conceptual information, as found in
language or reasoning.

But it also provides distinctive benefits. First, in situ concepts are content
addressable. Thus, as illustrated here, the concept and other information given by a
question will directly select the related information stored in the neural blackboard by
reactivating the in situ concept representations. This, in turn, can guide the reasoning
process by interactions between the neural blackboard and a reservoir network that
selectively responds to sequential information.

The interaction between neural blackboards and control networks (e.g., reservoirs)
also offers new forms of learning, in which the distinction between structured neural
blackboards, control circuits and content addressable activation by in situ concepts
strongly reduces the number of contingencies that have to be learned.

Furthermore, in situ representations are not moved or copied. And, as noted, they are
content addressable. Therefore, neural blackboard architectures of reasoning and other
forms of (high-level) cognitive processing with in situ representations would be very
suitable for implementation in (e.g., new) forms of parallel and power reduced hardware.

Acknowledgements
The work of the author was funded by the project ConCreTe. The project ConCreTe
acknowledges the financial support of the Future and Emerging Technologies (FET)
programme within the Seventh Framework Programme for Research of the European
Commission, under FET grant number 611733.

References
1. Hebb, D. O. (1949). The organisation of behaviour. New York: Wiley.
2 van der Velde, F (2015). Communication, concepts and grounding. Neural networks, 62 ,

112 - 117.
3 van der Velde, F. and de Kamps, M. (2006). Neural blackboard architectures of

combinatorial structures in cognition. Behavioral and Brain Sciences, 29, 37-70.
4. van der Velde, F & de Kamps, M. (2010). Learning of control in a neural architecture of

grounded language processing. Cognitive Systems Research, 11, 93–107.
5 van der Velde, F., and de Kamps, M. (2015). Combinatorial structures and processing in

neural blackboard architectures. In Proceedings of the Workshop on Cognitive Computation:
Integrating Neural and Symbolic Approaches (CoCo@NIPS 2015), eds T. R. Besold, A.
d’Avila Garcez, G. F. Marcus, and R. Miikkulainen (Montreal). CEUR Workshop
Proceedings (pp. 1-9).

6. van der Velde, F. (2016). Concepts and relations in neurally inspired in situ concept-based
computing. Frontiers in Neurorobotics. 10:4. doi: 10.3389/fnbot.2016.00004

7 Bordes, A., Weston, J., Chopra, S., Mikolov, T., Joulin, A., Rush, S., & Bottou, L. (2015).
Artificial Tasks for Artificial Intelligence. Facebook AI Research. ICLR – San Diego – May
7, 2015. http://www.iclr.cc/lib/exe/fetch.php?media=iclr2015:abordes-iclr2015.pdf

8. Jaeger, H and Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and
saving energy in wireless communication. Science, 304, 78-80.

9. Hinaut X, Dominey PF (2013) Real-Time Parallel Processing of Grammatical Structure in
the Fronto-Striatal System: A Recurrent Network Simulation Study Using Reservoir
Computing. PLoS ONE 8(2): e52946. doi:10.1371/journal.pone.0052946

10 Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations
of model neurons. Biophysical Journal, 12, 1–24

A Proposal for Common Dataset in

Neural-Symbolic Reasoning Studies

Ozgur Yilmaz, Artur d’Avila Garcez, and Daniel Silver

Turgut Ozal University, Computer Science Department, Ankara Turkey
City University London, Department of Computer Science, London UK

Acadia University, Jodrey School of Computer Science, Nova Scotia Canada,
ozyilmaz@turgutozal.edu.tr,a.garcez@city.ac.uk

danny.silver@acadiau.ca

Abstract. We promote and analyze the needs of a common publicly
available benchmark dataset to be used for neural-symbolic studies of
learning and reasoning. The recently released Visual Genome repository
is proposed as a suitable dataset to meet these needs. Along with the
original tasks that were suggested by the Visual Genome creators, we
propose neural-symbolic tasks that can be used as challenges to promote
research in the field and competition between lab groups.

Keywords: Neural-symbolic computing, common dataset, relational learn-
ing, reasoning, visual entailment

1 Introduction

Research into neural-symbolic integration seeks to combine learning from sub-
symbolic vector representations of data and concepts with symbolic reasoning
and knowledge representation. [4–7]. In order to integrate the sub-symbolic neu-
ral representations of sensory data with the symbolic knowledge tools developed
within AI over the last 60 years of research, a mathematical toolbox has to
be designed that has the capability of translating between di↵erent levels of
knowledge representation. In its infancy, by comparison, neural-symbolic studies
are promising ventures towards an AI system which can recognize patterns in
sensory data and reason about such commonsense patterns and knowledge.

The existence of a satisfactory dataset has been shown to be fruitful in many
computer science fields. It enables a fair comparison of existing approaches and
encourages competition. It should be mentioned also that benchmark datasets
introduce a potential bias, as problems not covered by the benchmark receive
less attention. Due to the growth of the web and abundance of data, ease of an-
notation by crowd-sourcing and the desire to build accurate applications, many
large datasets have been developed within computer vision, such as ImageNet
[1], Microsoft COCO [2] and VQA [3]. The size of these datasets is large to
accommodate very complex models, specifically deep neural networks, with the
promise of use as technological tools in everyday life such as image search and
retrieval, or image captioning for the visually impaired.

2 A Proposal for Common Dataset in Neural-Symbolic Reasoning Studies

There are valuable experimental studies in neural-symbolic reasoning, how-
ever there is a need for a common publicly-available benchmark dataset to en-
courage progress and communications in the field. Datasets exist in Statisti-
cal Relational Learning (SRL) and Inductive Logic Programming (ILP) which
may be suitable for neural-symbolic integration. Recently developed datasets
for vision-language tasks such as image caption generation and visual ques-
tion answering seem attractive for neural-symbolic studies since they require
complex pattern recognition over images and symbol manipulation of language.
Yet, symbol manipulation and reasoning are limited to image description text
that is unstructured, and not amenable to traditional natural language process-
ing (NLP) tools. The ideal dataset for neural-symbolic studies should include
a large and complex raw data set for sub-symbolic systems to learn e↵ective
and discriminative representations, as well as a formal representation of the raw
data (a knowledge-base in first order logic) for symbolic systems to learn general
rules and perform logical inference. Existence of both complex sub-symbolic data
and its high level symbolic interpretation is essential for developing the above-
mentioned translational methods between the two forms of representations which
are at the heart of neural-symbolic integration.

In this paper, we propose the use of the Visual Genome dataset [13] as the
best challenge benchmark dataset for neural-symbolic integration. The dataset
is valuable “as is” towards the goals of neural-symbolic integration, however, we
also suggest additional features and challenge tasks for the dataset to meet a
wider range of research objectives within neural-symbolic computing.

In Section 2, we recall the goals of neural-symbolic integration (NSI). In
Section 3, we describe the visual genome (VG) dataset. In Section 4, we list
existing applications of VG to NSI. In Section 5, we propose the new applications
and extensions, and in Section 6, we conclude the paper.

2 Neural-Symbolic Reasoning

Neural-symbolic systems [8] integrate logical reasoning and statistical learning
by o↵ering sound translation algorithms between network and logic models. They
contain three main components: (1) knowledge encoding and reasoning in neu-
ral networks, (2) knowledge evolution and network learning, and (3) knowledge
extraction from trained networks. In a neural-symbolic system, neural networks
provide the machinery for e�cient computation and robust learning, while logic
provides high-level representations, reasoning and explanation capabilities to the
network models, promoting modularity, facilitating validation and maintenance
and enabling a better interaction with existing systems.

Neural-symbolic systems have had important applications in diverse areas
such as bioinformatics, fraud prevention, assessment and training in simulators,
cognitive robotics, general game playing, image, audio and video classification,
software verification, and the semantic web. Nevertheless, a major challenge that
remains is how to e↵ectively benefit from both (i) robust statistical methods
that work well on real-valued vectors and (ii) rich and interpretable represen-

A Proposal for Common Dataset in Neural-Symbolic Reasoning Studies 3

Fig. 1. From perceptual awareness to cognitive understanding of images [13]: images
are annotated with numerous region descriptions, objects, attributes, and relationships,
e.g.: “girl feeding large elephant” and “a man taking a picture behind girl” (top picture),
with objects (e.g. elephant), attributes (e.g. large) and their relationships (e.g. feeding)
described in the bottom picture.

tations which enable explanations to be reasoned about and transferred across
applications. The above requires the e↵ective translation of relational symbolic
knowledge for use by statistical methods which work well with vectors (without
the need for grounding all instances of the knowledge-base into the model of
choice) and the e↵ective extraction of compact and rich representations from
vector-based models following neural network learning.

The emergence of symbolic representations is natural in any complex do-
main associated with large collections of data. In fact, symbolic representations
seem critical to the solution of many interesting challenges involving big data.
Consider, for example, the recent AlphaGo experiment1 or the requirements of
life-long learning[9] or intelligent agents who interact with the environment. The
above is particularly relevant when neural-symbolic integration meets computer

1 https://www.technologyreview.com/s/601072/five-lessons-from-alphagos-historic-
victory/

4 A Proposal for Common Dataset in Neural-Symbolic Reasoning Studies

vision. As pointed out at a recent Dagstuhl seminar on neural-symbolic com-
puting 2, a serious challenge in the field is the lack of specifically relevant and
systematic evaluation mechanisms. The benchmark-based approach, which is
useful in some cases, is very limited in others, including the benchmarks used in
Statistical Relational Learning (SRL) and Inductive Logic Programming (ILP)
[11, 12]. In particular, when the goal is (i) to evaluate how well a system in-
tegrates learning and reasoning, or (ii) to evaluate how useful or interpretable
the learned descriptions are, existing benchmarks fall short: SRL will tend to
ground all representation without a focus on first-order reasoning; ILP tend not
to handle real-valued vectors or provide for robust learning. Neural-symbolic sys-
tems seek to benefit from the knowledge representation and reasoning capacities
of logical symbolic representations, and the robust learning capacities of neural
networks, reconciling the logical nature of reasoning and the statistical nature of
learning [10]. The provision of a data challenge as proposed here should promote
the fair comparative evaluation of: (1) e↵ective learning from noisy data and (2)
reasoning about what has been learned.

3 Visual Genome

Visual understanding is suggested to be an AI-complete problem [17], therefore
it is a challenging testbed for neural-symbolic studies. A genuine understanding
of a visual scene requires detecting objects, recognizing attributes of objects and
inferring their interactions and relationships. Understanding images thoroughly
requires a grounding of visual concepts onto language and a formalized represen-
tation of the components of an image, as stated in [13]: “existing models would
be able to detect discrete objects in a photo but would not be able to explain
their interactions or the relationships between them. Such explanations tend
to be cognitive in nature, integrating perceptual information into conclusions
about the relationships between objects in a scene...”. Going from perceptual
to cognitive, from image to language, demands a range of operations that must
lift the representation from subsymbolic to symbolic, which it is at the core of
neural-symbolic computation studies.

Similar to previous attempts on visual knowledge bases [14–16], the Visual
Genome provides a large set of images and annotations of image regions which
is formalized as a scene graph of objects and their relations. Images in the
dataset (see Figure 1) contain multiple image regions each having multiple object
instances. The attributes of object instances and their relationship (predicate)
with other objects are also recorded. Region graphs are combined to form a scene
graph of an image, which can be translated into a knowledge base, as well as
plain language using basic NLP tools. The concepts in the dataset can be linked
to existing knowledge in other datasets or systems because all objects, attributes
and relationships in each image in the Visual Genome can be mapped onto a
corresponding WordNet ID, called a synset ID [18]. As described in the Visual

2 http://www.dagstuhl.de/14381

A Proposal for Common Dataset in Neural-Symbolic Reasoning Studies 5

Genome project main webpage3, the dataset contains 108,249 images (with an
average image size of 500 pixels), 4.2 million region descriptions (with around
75,000 unique image objects), 1.7 million visual question-answers, 2.1 million
object instances, 1.8 million attributes (40,500 unique attributes), 1.8 million
relationships (40,500 unique relationships), 1.5 million object-object relationship
instances, 1.6 million attribute-object instances, 108,249 total scene graphs and
3,788,715 total region graphs.

Therefore, visual genome contains a dense formal knowledge representation
of images suitable to be manipulated by symbolic computation approaches, as
well as sensory image data ready to be recognized and analyzed by connection-
ist methods. For vision/language tasks, region descriptions and question-answer
pairs related to images are also provided. Overall the dataset enables a wide
range of scene understanding applications, which typically require high level
symbol manipulation and language processing. Furthermore, the symbolic for-
malism contained in Visual Genome favors first order logic representations and
relational learning. The scale of the dataset means that approaches which per-
form grounding will probably be less e↵ective than truly relational approaches.
In other words, Visual Genome targets a major, arguably the most important,
open challenge in neural-symbolic integration: the e↵ective handling of learning
from real-valued vectors and reasoning from rich knowledge representations.

4 Existing Applications on the Visual Genome

The developers of the dataset have introduced some interesting tasks, two of
which are explained below.

4.1 Attribute and Relationship Prediction

Object class prediction and object detection is at the center of computer vi-
sion studies, and successful deep learning algorithms [20, 19] dominate the field.
The Visual Genome enables dense and accurate attribute/predicate estima-
tion; bounding boxes that contain an object can be analyzed for predicting
attribute/predicate dimensions.

Researchers have found that learning attribute-object class pairs for each
bounding box dramatically improves attribute prediction performance possibly
due to the unique association of some attributes with specific object classes.
Similarly, learning subject class - predicate - object class triplets instead of pred-
icate only, can improve performance. This is again due to the fact that some
relationships occur only among a very small subset of objects classes (e.g. the
drive predicate accepts the person subject exclusively). Such applications can be
considered an instantiation of collective classification in relational learning [32].

3 https://visualgenome.org/

6 A Proposal for Common Dataset in Neural-Symbolic Reasoning Studies

4.2 Caption Generation and Visual Question Answering

The existence of region descriptions and question-answer pairs on images facil-
itate vision-language processing tasks. The visual representation of images and
regions can be used in a generative architecture to produce syntactically and se-
mantically correct text such as automated image caption generation. Recurrent
neural network algorithms have been deployed successfully [21] for such vision-
language applications. However, a major challenge has been judging performance
accuaracy of automated image captioning, e.g. is “A cat is beside a dog under a
parked car” the same as “A car is parked over a dog and a cat”?

5 Suggested Applications and Extensions

Visual Genome holds a very rich representation of the visual world, ready to be
exploited by cognitive tasks. We envision that the dataset can be used for a wide
set of experimental paradigms, or can be extended by additional crowd-sourced
annotations as required. We provide a set of novel tasks, which is not meant to be
exhaustive. Along with the task definitions, we provide a high level algorithmic
description of how to tackle them in order to illustrate how neural-symbolic
studies would benefit from the dataset.

Generally, neural-symbolic approaches would ground the sensory data onto
symbols and manipulate those, or perform vector algebra on neural representa-
tions to form a hierarchy of concepts and rules on the vector space. The main
questions are how to accurately and e↵ectively ground the data or how to ma-
nipulate the vectors as done with symbols in AI, as well as how to use both
mathematical tools simultaneously.

5.1 Visual Entailment

Comprehension of entailment and contradiction in sentences is an important
part of language processing. In textual entailment tasks, two sentences need
to be understood and the system has to decide whether they contradict each
other, they are neutral (unrelated) or they entail each other. The scene graph
in Visual Genome is already a valuable asset in the textual entailment task, as
utilized in a study in [22], yet there is much more to be done. We propose a new
task called visual entailment in which images, relationships and scene graphs are
used to detect entailment and contradictions. This is a very natural use of the
image representation for neural-symbolic tasks: inference can be performed at
the symbolic level if images are grounded onto class and attribute predictions by
a classifier, or inference can be partly done at the sub-symbolic level using the
neural representations of images. Sub-symbolic computation requires an algebra
on semantically meaningful vector representations [33].

We present two image bounding boxes, then ask whether there is entail-
ment/contradiction/neutralism. The decision is very much related to the possi-
ble relationships between image boxes. If there is a relationship then the answer

A Proposal for Common Dataset in Neural-Symbolic Reasoning Studies 7

is entailment, if not, it can be neutral or contradiction, depending on the com-
patibility with commonsense. A car and a tire imply entailment, a car and a
house window may be neutral but a car and a kitchen sink is probably a con-
tradiction. The output can be set to a range between -1 (contradiction) and 1
(entailment), at which point the supervised learning may become a regression
task instead of classification. It should be noted that visual entailment aims at
finding relationships between two scenes thus the proposed task is closely related
to link prediction in relational learning, where the goal is to learn the existence
of a relationship. Therefore, the idea of contradiction in visual entailment means
learning the lack of a relationship, which is not the case in textual entailment
task.

The task becomes even more interesting and similar to textual entailment
if we allow one or two of the image boxes to be a large region with multiple
objects and relationships in it. Then the system needs to analyze the congruence
of region graphs, hence knowledge bases. A subsymbolic approach would use
neural embeddings of the image boxes to generate rules of entailment on the
vector space possibly using a vector symbolic architecture [23, 24] and/or an
attention-memory computation framework [25]. A symbolic approach would use
the class/attribute/relationship predictors to go up to knowledge base level.

5.2 Scene Graph Estimation

Possibly the hardest task is generating the scene graph of an image because the
graph holds the complete high level information regarding the image, we need
to go from the sensory to the most complete cognitive level. It requires to fo-
cus on specific bounding boxes in the image, estimate object/attribute labels
and jump to other image boxes while predicting relationships between them.
Thus the graph can be built part by part possibly with multiple passes on the
same image region. These multiple passes can possibly be hierarchical in nature,
extracting graph structure from coarse to fine details. This workflow resembles
the strategy of recurrent architectures with attention-memory mechanisms[26].
Another strategy more in the flavor of neural-symbolic computation would be
training the system by encoding regions and scenes in the training dataset with
fixed length vector representations and forming a “graph knowledge-base”, then
matching the test region with the knowledge base to obtain the most repre-
sentative and similar region description in the training set. After this initial
estimation, fine-tuning can optionally be done with the recurrent architectures
with attention-memory mechanisms.

The main challenge in this task is related to the variable binding problem:
multiple instances of the same object/concept/relationship as it appears in dif-
ferent times and context need to reuse a common function with possibly di↵erent
values. One possible solution to this problem is transferring learned representa-
tion across di↵erent contexts [28].

8 A Proposal for Common Dataset in Neural-Symbolic Reasoning Studies

5.3 Visual Rule Extraction and Analogy

Is it possible to mine the scene graphs for extracting logical clauses such as
“If Man not(Standing) Then Man SitsOn(Something)”? This capability is
essential for forming the visual commonsense knowledge mentioned earlier. In a
similar flavor, visual analogies can be made such as “Leg is to Man as Tire is
to Car”. These are strictly in the domain of symbolic computation when images
are grounded to class/attributes and predicate predictions are processed in the
scene graph. However, what if we wanted to retrieve rules and analogies directly
using image portions? Then, neural representations of images would need to be
processed to harvest conditional and analogical “statements” at the sub-symbolic
level [27, 29, 34]. The rules and analogies that form the commonsense knowledge
and representations of the images are expected to live on the same space, which
is essential for combining connectionist and symbolic capabilities. Visual rule
extraction can also be tackled with inductive bias transfer of neural networks
across di↵erent task domains [30]. More interesting approaches would be again
hybrid ones that utilizes the symbolic mechanisms along with vector algebra.

5.4 Collective Classification

Another relevant relational learning task is collective classification: simultaneous
prediction of the class of several object bounding boxes in a region given their
attributes or relations. This is superficially similar to attribute and relation
prediction tasks already examined in [13], yet the proposed task is not bounded
by pairwise bounding box queries but all the objects in a region or even in a
whole image can be considered for a more challenging collective classification.
This is directly related with multiple task learning and inductive bias transfer
between many tasks, as studied from a neural-symbolic perspective in [31].

5.5 Unsupervised co-training of a subject class - predicate - object
class using images and symbols

Related to prior work discussed in Section 4.1 is the unsupervised co-training
of subject class - predicate - object class triples using both image data as well
as symbolic logic. The intention is to show that one can learn an unsupervised
generative model (e.g. stacked Restricted Boltzmann Machines) that are capa-
ble of reconstructing the images given the symbols, and the symbols given the
images. Here, symbols could be represented as combinations of textual inputs or
as images themselves.

6 Conclusion

We have proposed Visual Genome as a challenge and benchmark dataset for
neural-symbolic integration. Along with the original tasks that were suggested
by the Visual Genome creators, we also identify tasks specific for neural-symbolic

A Proposal for Common Dataset in Neural-Symbolic Reasoning Studies 9

integration, in particular combining learning from real-valued vectors and rea-
soning from rich relational knowledge representations, to promote research in
the field and competition between lab groups.

Acknowledgments. We would like to thank the reviewers for detailed and very
beneficial comments on the paper. Ozgur Yilmaz is supported by The Scientific
and Technological Research Council of Turkey (TUBİTAK) Career Grant, No:
114E554.

References

1. Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. International Journal of Com-

puter Vision, 115(3):211–252, 2015.
2. Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects
in context. In Computer Vision–ECCV 2014, pages 740–755. Springer, 2014.

3. Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. In Proceed-

ings of the IEEE International Conference on Computer Vision, pages 2425–2433,
2015.

4. Tarek R Besold and Kai-Uwe Kühnberger. Towards integrated neural–symbolic
systems for human-level AI: Two research programs helping to bridge the gaps.
Biologically Inspired Cognitive Architectures, 14:97–110, 2015.

5. Artur S. d’Avila Garcez, Luis C Lamb, and Dov M Gabbay. Neural-symbolic

cognitive reasoning. Springer Science & Business Media, 2008.
6. Sebastian Bader and Pascal Hitzler. Dimensions of neural-symbolic integration-a

structured survey. arXiv preprint cs/0511042, 2005.
7. Artur S. d’Avila Garcez, Tarek R Besold, Luc de Raedt, Peter Földiak, Pascal

Hitzler, Thomas Icard, Kai-Uwe Kühnberger, Luis C Lamb, Risto Miikkulainen,
and Daniel L Silver. Neural-symbolic learning and reasoning: contributions and
challenges. In Proceedings of the AAAI Spring Symposium on Knowledge Repre-

sentation and Reasoning: Integrating Symbolic and Neural Approaches, Stanford,
2015.

8. Artur S. d’Avila Garcez, Lúıs C. Lamb, and Dov M. Gabbay. Neural-Symbolic

Cognitive Reasoning. Cognitive Technologies. Springer, 2009.
9. Daniel L Silver, Qiang Yang, and Lianghao Li. Lifelong machine learning systems:

Beyond learning algorithms. In in AAAI Spring Symposium Series. Citeseer, 2013.
10. Leslie G. Valiant. Knowledge infusion. In Proceedings, The Twenty-First National

Conference on Artificial Intelligence and the Eighteenth Innovative Applications of

Artificial Intelligence Conference, July 16-20, 2006, Boston, Massachusetts, USA,
pages 1546–1551, 2006.

11. Jue Wang and Pedro M. Domingos. Hybrid markov logic networks. In Proceed-

ings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008,

Chicago, Illinois, USA, July 13-17, 2008, pages 1106–1111, 2008.
12. Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole. Statistical

Relational Artificial Intelligence: Logic, Probability, and Computation. Synthesis

10 A Proposal for Common Dataset in Neural-Symbolic Reasoning Studies

Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Pub-
lishers, 2016.

13. Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua
Kravitz, Stephanie Chen, Yannis Kalanditis, Li-Jia Li, David A Shamma, Michael
Bernstein, and Li Fei-Fei. Visual genome: Connecting language and vision using
crowdsourced dense image annotations. 2016.

14. Yuke Zhu, Ce Zhang, Christopher Ré, and Li Fei-Fei. Building a large-scale
multimodal knowledge base system for answering visual queries. arXiv preprint

arXiv:1507.05670, 2015.
15. Xinlei Chen, Abhinav Shrivastava, and Abhinav Gupta. Neil: Extracting visual

knowledge from web data. In Proceedings of the IEEE International Conference

on Computer Vision, pages 1409–1416, 2013.
16. Fereshteh Sadeghi, Santosh K Divvala, and Ali Farhadi. Viske: Visual knowledge

extraction and question answering by visual verification of relation phrases. In
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1456–1464. IEEE, 2015.

17. Dafna Shahaf and Eyal Amir. Towards a theory of ai completeness. In AAAI Spring

Symposium: Logical Formalizations of Commonsense Reasoning, pages 150–155,
2007.

18. George A Miller. Wordnet: a lexical database for english. Communications of the

ACM, 38(11):39–41, 1995.
19. Ross Girshick, Je↵ Donahue, Trevor Darrell, and Jitendra Malik. Rich feature

hierarchies for accurate object detection and semantic segmentation. In Proceedings

of the IEEE conference on computer vision andpattern recognition, pages 580–587,
2014.

20. Alex Krizhevsky and Geo↵rey Hinton. Learning multiple layers of features from
tiny images. Computer Science Department, University of Toronto, Tech. Rep,
2009.

21. Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating
image descriptions. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3128–3137, 2015.
22. Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning.

A large annotated corpus for learning natural language inference. arXiv preprint

arXiv:1508.05326, 2015.
23. Simon D Levy and Ross Gayler. Vector symbolic architectures: A new building

material for artificial general intelligence. In Proceedings of the 2008 conference

on Artificial General Intelligence 2008: Proceedings of the First AGI Conference,
pages 414–418. IOS Press, 2008.

24. Je↵ Mitchell and Mirella Lapata. Vector-based models of semantic composition.
In ACL, pages 236–244, 2008.

25. Ivo Danihelka, Greg Wayne, Benigno Uria, Nal Kalchbrenner, and Alex Graves.
Associative long short-term memory. arXiv preprint arXiv:1602.03032, 2016.

26. Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory
networks. In Advances in Neural Information Processing Systems, pages 2431–
2439, 2015.

27. Ozgur Yilmaz. Symbolic computation using cellular automata-based hyperdimen-
sional computing. Neural computation, 2015.

28. Daniel L Silver. The parallel transfer of task knowledge using dynamic learning
rates based on a measure of relatedness. Connection Science, 8(2):277–294, 1996.

A Proposal for Common Dataset in Neural-Symbolic Reasoning Studies 11

29. Ozgur Yilmaz. Analogy making and logical inference on images using cellular
automata based hyperdimensional computing. In Advances in Neural Information

Processing Systems, Cognitive Computation Workshop, pages 1–9, 2015.
30. Daniel L Silver. Selective functional transfer: Inductive bias from related tasks. In

IASTED International Conference on Artificial Intelligence and Soft Computing

(ASC2001). Citeseer, 2001.
31. Daniel L Silver and Liangliang Tu. Image transformation: inductive transfer be-

tween multiple tasks having multiple outputs. In Advances in Artificial Intelligence,
pages 296–307. Springer, 2008.

32. Prithviraj Sen, Galileo Mark Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher
and Tina Eliassi-Rad. Collective Classification in Network Data. AI Magazine,
3(29):93–106. 2008.

33. Luciano Serafini and Artur S. d’Avila Garcez. Logic Tensor Networks: Deep
Learning and Logical Reasoning from Data and Knowledge. arXiv preprint

arXiv:1606.04422, 2016.
34. Tarek Richard Besold, Kai-Uwe Kühnberger, Artur S. d’Avila Garcez, Alessandro

Sa�otti, Martin H. Fischer and Alan Bundy. Anchoring Knowledge in Interaction:
Towards a Harmonic Subsymbolic/Symbolic Framework and Architecture of Com-
putational Cognition. Artificial General Intelligence - 8th International Conference,
AGI 2015, AGI 2015, Berlin, Germany, July 22-25, 2015.

High-Power Logical Representation via Rulelog,
for Neural-Symbolic

(position paper, extended abstract)

Benjamin N. Grosof

Coherent Knowledge
Mercer Island, Washington, USA

http://coherentknowledge.com

email: firstname dot lastname at coherentknowledge dot com

1 Introduction

Combining neural networks (NN) methods with symbolic methods is an area that is
exciting in terms both of basic research and practical application. We discuss here the
opportunities and challenges involved in combining NN (“neural”) with logical knowl-
edge representation and reasoning (KRR) that has high expressive power and funda-
mental scalability (“high-power” KRR). We describe how Rulelog KRR fits pretty well
these challenges. (Note “logical” here includes probabilistic.)

2 Why to Combine KRR with NN and ML, generally

The domain-independent core of artificial intelligence (AI) consists of both KRR and
machine learning (ML), as has been widely recognized within the AI research commu-
nity since at least the 1980s.

There are a number of ways in which it is useful, or even required, to combine KRR
methods with ML methods. The prediction step of ML requires reasoning. The target of
ML is a representation. Getting business value from ML usually requires reasoning for
analysis and decisions. KRR is required to effectively combine the results of ML from
multiple ML episodes, sources, or methods. KRR is required to accumulate knowl-
edge coherently, as knowledge ongoingly originates from ML (as well as from non-ML
origins). KRR is required to explain knowledge understandably. Explanations are often
part of required or desired analysis functionality for their own sake; they are also needed
for humans to trust an automated system, check and debug knowledge/reasoning, and to
help ask drill-down follow-up questions. ML-based technology today often – arguably,
usually – has weaknesses in regard to such effective combination, coherent accumula-
tion, and understandable explaining. Reasoning is useful to supply derived facts for ML
to chew on. Reasoning is useful to focus ML’s tasks and conjecture schemas: e.g., to
provide sets of relevant features (perhaps weightedly) and/or important questions (rea-
soning “(sub)goals”), so as as to drive ML. Last but not least, humans know stuff beyond

what is available via ML training data, and such knowledge is often pretty complex to
state. Programming is expensive, so KRR methods are often a more cost-effective ap-
proach to entry/capture of such knowledge.

2 Grosof

3 Symbolic Side’s Representational Challenges and Requirements

For the (KRR-based) symbolic side to combine most effectively with the neural side,
there are a number of representational challenges and requirements. Highly flexible ex-
pressiveness is needed; ideally any kind of knowledge can be ingested by the KRR.
Thus it should be equipped feature-wise with higher-order syntax, logically quanti-

fied formulas, and strong meta (statements about statements). The KRR should repre-
sent numeric weighting and uncertainty, including (but not limited to) probabilistic and
fuzzy. The KRR should treat the evolving character of knowledge and of the world;
technically, it should have the defeasibility feature. The KRR should provide reason-
ing that is deep, including (but not limited to) multi-step in its logical chaining. The
KRR should be scalable despite being expressive: not only computationally scalable
to large amounts of asserted and concluded knowledge (“volume” and “velocity”) but
also “socially scalable” in regard to the diverse multiplicity of ML/other info sources,
algorithmic methods, and underlying data samples (“variety”).

4 Rulelog KRR Technology, its Advantages and Limitations

Rulelog methods meet the above set of neural-driven representational challenges pretty
well overall: not only pareto-optimally among the set of available KRR approaches, but
arguably better than any other KRR approach. Rulelog methods are especially strong
on the meta and higher-order features, while providing scalability. They are also well
suited to orchestrating / federating multiple knowledge sources and components so as
to assemble and compose multiple analysis results.

Rulelog is a leading approach to semantic rules KRR. It is expressively powerful,
computationally affordable, and has capable efficient implementations. A large subset
of Rulelog is in draft as an industry standard1 to be submitted to RuleML2 and W3C3

as a dialect of Rule Interchange Format (RIF) [1, 2].
Rulelog [4] extends database logic and well-founded declarative logic programs

(LP) with:

– strong meta-reasoning, including higher-order syntax (Hilog) and rule ids (within
the logical language);

– explanations of inferences;
– efficient higher-order defaults, including “argumentation theories”;
– flexible probabilistic reasoning — including distribution semantics and evidential

probability;
– bounded rationality, including restraint — a “control knob” to ensure that the com-

putational complexity of inference is worst-case polynomial time;
– “omni-directional” disjunction and existential quantifiers in the rule heads;
– object-orientation and frame syntax, which subsumes RDF triples;

1
http://ruleml.org/rif/rulelog/rif/RIF-Rulelog.html

2
http://www.ruleml.org

3
http://www.w3.org

High-Power Logical Representation via Rulelog, for Neural-Symbolic 3

– sound tight integration of first-order-logic ontologies including OWL; and several
other lesser features, including aggregation operators and integrity constraints.

Probabilistic reasoning and tight integration with (inductive) ML is a key area of recent
technology progress and ongoing R&D on Rulelog.

Rulelog also combines closely with natural language processing (NLP), in the Tex-
tual Rulelog approach [5], so as to support: human authoring of knowledge; mapping
between different info schemas and terminologies; and explaining conclusions. This is
another key area of ongoing R&D on Rulelog.

Implementation techniques for Rulelog inferencing include transformational com-
pilations and extensions of tabling algorithms from logic programming. “Tabling” here
means smart caching of subgoals and conclusions together with incremental revision
of the cached conclusions when facts or rules are dynamically added or deleted [7, 8].
“Tabling” is thus a mixture of backward-direction and forward-direction inferencing.

There are both open-source and commercial tools for Rulelog that vary in their
range of expressive completeness and of user convenience. They are interoperable with
databases and spreadsheets, and complement inductive machine learning and natural
language processing techniques. The most complete system today for Rulelog is Ergo4,
a commercial platform suite from Coherent Knowledge5. Ergo Lite, a.k.a. Flora-26, is
an open source system that implements a significant subset of Rulelog reasoning. Ergo’s
ErgoText feature is a commercial realization of Textual Rulelog.

Rulelog has some important limitations. One is that it lacks “reasoning-by-cases”,
a.k.a. it is “intuitionistic”; it only concludes a disjunction if it concludes one of the
disjuncts. Another limitation is that Rulelog methods are not yet optimized for proba-
bilistic reasoning.

As has been extensively discussed in the ML and KRR literature, classical logic
(e.g., first-order logic but also higher-order logic) has reasoning-by-cases but is brit-
tle in the face of conflicting/evolving knowledge, and lacks computational scalability.
Markov Logic Networks [6] are attractively flexible and principled in their ability to
represent probabilistic/weighted knowledge, but are much less computationally scal-
able than Rulelog. Answer Set Programs [3] have reasoning-by-cases and are much
less brittle than classical logic, but lack computational scalability and many of Rulelog’s
expressive features. For reasons of focus, we refrain from giving here additional com-
parison to other KRR approaches.

Applications to date of Rulelog technology include a wide range of tasks and do-
mains in business, government, and science. Examples include: legal/policy compli-
ance, particularly in financial services; personalized tutoring about science; and e-commerce
marketing. Rulelog shines especially on representing, and deeply reasoning with, com-
plex commonly-arising kinds of knowledge such as: mappings among terminologies,
ontologies, and data schemas; policies, regulations, and contracts; and causal pathways
(e.g., in science).

4
http://coherentknowledge.com/ergo-suite-platform-technology/

5
http://coherentknowledge.com

6
http://http://flora.sourceforge.net

4 Grosof

5 Future Research Directions, including Applications

An immediate direction for future R&D is to hook up Rulelog implementations to NN
systems. There are many potential applications for this combination of Rulelog KRR
with NN – and/or with other ML. One realm is compliance and fraud. Another realm is
NL understanding in intelligence analysis and in search.

There are a number of other interesting future research directions in terms of core
technology and experiments, per the overall discussion in section 1. Next, we highlight
a few of these directions. One is to feed derived data from Rulelog to NN. Another is
to combine the results of neural with other ML and structured info, including human-
authored complex knowledge, e.g., that started life as English sentences. Terminology
mappings and source trustworthiness are two interesting kinds of such complex knowl-
edge represented in Rulelog. A third direction is to combine NN word-vector distributed
representations with Textual Rulelog.

Related future directions for research on Rulelog KRR itself include to optimize its
reasoning with probabilistic/weighted knowledge, and to extend Rulelog’s expressive-
ness to selective reasoning-by-cases.

References

1. Boley, H., Kifer, M.: RIF Basic Logic Dialect (February 2013), http://www.w3.org/
TR/rif-bld/, W3C Recommendation. http://www.w3.org/TR/rif-bld/

2. Boley, H., Kifer, M.: RIF Framework for Logic Dialects (February 2013), http://
www.w3.org/TR/rif-fld/, W3C Recommendation. http://www.w3.org/TR/

rif-fld/

3. Gelfond, M.: Answer Sets. In: van Harmelen, F., Lifschitz, V., , Porter, B. (eds.) Handbook of
Knowledge Representation, pp. 285–316. Elsevier, Amsterdam (2008)

4. Grosof, B.N., Kifer, M., Fodor, P.: Powerful Practical Semantic Rules in Rulelog: Funda-
mentals and Recent Progress (July 2015), http://2015.ruleml.org/tutorials.
html, Conference Tutorial (1.5 hours). Extended abstract is in the Symposium’s Pro-
ceedings (Springer-Verlag), and contains numerous references. Also available at http:
//coherentknowledge.com/publications/ .

5. Grosof, B.: Rapid Text-Based Authoring of Defeasible Higher-Order Logic Formulas, via
Textual Logic and Rulelog. In: Morgenstern, L., Stefaneas, P., Lvy, F., Wyner, A., Paschke,
A. (eds.) Theory, Practice, and Applications of Rules on the Web, Lecture Notes in Computer
Science, vol. 8035, pp. 2–11. Springer Berlin Heidelberg (2013), http://dx.doi.org/
10.1007/978-3-642-39617-5_2

6. Richardson, M., Domingos, P.: Markov Logic Networks. Machine Learning 62, 107–136
(2006)

7. Swift, T., Warren, D.: XSB: Extending the Power of Prolog using Tabling. Theory and Practice
of Logic Programming 12(1-2), 157–187 (September 2012)

8. Swift, T.: Incremental Tabling in Support of Knowledge Representation and Reasoning. TPLP
14(4-5), 553–567 (2014), http://dx.doi.org/10.1017/S1471068414000209

Heterotic Continuous Time Real-valued/Boolean-valued
Networks

Daniel R. Patten1 and Howard A. Blair2

1 USAF Research Laboratory, Rome NY USA
drpatten@syr.edu

2 EECS, Syracuse University, Syracuse, NY USA
blair@ecs.syr.edu

Keywords: heterotic, differential, dynamical system, convergence space

1 Extended abstract
Heterotic models of computation were introduced in 2012 by Stepney et al. in

[2011]. Heterotic models of computation seamlessly combine computational mod-
els such as classical/quantum, digital/analog, synchronous/asynchronous, impera-
tive/functional/relational, etc. to obtain increased computational power, both prac-
tically and theoretically.

Although much greater generality is possible – we have previously reported on
heterotic quantum/classical dynamical systems, [2014] – we here concentrate on
heterotic dynamical systems that are given by continuous time real-valued/boolean-
valued networks, which in the sequel we refer to as a heterotic Boolean network
(HBN). A network of this kind is a finite directed graph with a reflexive edge rela-
tion where each vertex is of type real or of type boolean. Each vertex updates its
value in continuous time according to a dynamics specified by a set of autonomous
first-order differential equations{

d xi /d t = fi (x1, . . . , xn) | i = 1, . . . , n
}

(1)
where each variable xi corresponds to a vertex in the network.

Nearly all continuous time dynamical systems can be expressed as a system of
1st-order differential equations provided a differential calculus satisfying a functorial
chain rule is available for functions mapping between the spaces corresponding to
the types of the variables involved in the system. The purpose of the proposed differ-
ential calculus in this application to HBN’s is to allow for the uniform and seamless
specification of an HBN via such systems of 1st-order differential equations. Since
the calculus is mathematically rigorous it provides a formal semantics for such spec-
ifications and therefore a rigorous basis for verification and validation of an HBN
with respect to those specifications. In the HBN applications we need to have a dif-
ferential calculus that agrees with the familiar calculus on Euclidean spaces that ex-
tends to functions mapping reals to Booleans, and Booleans to Booleans. We use the
apparatus of convergence spaces, [2016].

To conservatively extend the notion of differentiation to general convergence
spaces, we note first that the set of continuous functions from X to Y which we
denote here by Y X has a convergence structure uniformly constructible from the

convergence structures on X and Y such that the category of convergence spaces is
Cartesian-closed; the details of the convergence structure on the exponential spaces
Y X need not concern us at present; it is enough that we have convergence struc-
tures available on the exponential spaces sufficient for obtaining a chain rule. Also
for the present application of convergence spaces differences x0−x are needed; they
are constructible from an Abelian regular action on the convergence space, [1995],
which renders the space as a module over a ring. Modules are nearly vector spaces
where non-zero scalars are not guaranteed to have inverses.

Suppose convergence spaces Y and X are each equipped with regular actions
and the sum and difference of pairs of points in X and Y have been determined. Then
choose a subspace Diff(X ,Y) of Y X to serve as values of the derivative operation on
these functions spaces. For example, we choose Diff(Rm ,R) to be the space of linear
functionals on Rm , and similarly for Diff(Bm ,B). Then g ∈Diff(X ,Y) is a differential
of f at x0 iff for every filter F ↓X x0 there is a filter G ↓Y X g such for each W ∈G there
is a V ∈ F such that for each x ∈V , there is h ∈W such that h(x − x0) = f (x)− f (x0).

In this application we also need to choose DIff(R,B). We identify B with {0,1} with
the indiscrete convergence structure. We take Diff(R,B) to be the discrete space of
the following four functions: (1) the constant function mapping all real number to
0, (2) the “step” function f (x) = (x ≤ 0) ? 0 : 1, (3) f (x) = (x ≥ 0) ? 0 : 1 and (4) f (x) =
(x = 0) ? 0 : 1. Under these definitions the system (1) is well-defined, but may or may
not have a solution. After all, even with a rigorous denotational semantics, not every
syntactically correct program in an ordinary programming language has a solution
in the sense that it will produce a well-defined trajectory (i.e. no run-time errors.)

We conclude with a small example of an HBN:
d x/d t = ((b = 1) ? [−sin x] : [sin x]), d y/d t = ((b = 1) ? [cos x] : [−cos x])

db/d t = (prime(t) ? (λt ′.((t ′ ≤ t) ? 0 : 1) : λt ′.0)
The solutions to this equation have the boolean value of b changing whenever t is
a prime nonnegative integer and have point given by cordinates (x, y) traversing a
circle of radius 1 centered at the origin. The point reverses direction whenever t is
prime.

References

2011. S. Stepney, V. Kendon, P. Hines and A. Sebald: “A framework for heterotic computing”,
8th International Workshop on Quantum Physics and Logic (QP L 2011), 2012, 263–273

2014. D.R. Patten, H.A. Blair and P.M. Alsing: “Heterotic quantum dynamical systems: an ap-
plication of differential calculus on digraphs”, 14th Haifa Workshop on Interdisciplinary Ap-
plications of Graph Theory, Combinatorics and Algorithms, Haifa, Israel

2009. S. Rudeanu. “What can be expected from a Boolean derivative,” Analele Stiintifice ale
Universitatii Ovidius Constanta Vol. 17(1), 2009, 177–186

2016. L. Nel. Continuity Theory. Springer, 2016.
2015. Patten et.al., “Differential Calculus on Cayley Graphs”. arXiv 1504.08013.
1995. J. Rotman. An Introduction to the Theory of Groups (Graduate Texts in Mathematics).

