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Preface 
 
 
NeSy’15 is the tenth installment of the long-running series of international workshops on 
Neural-Symbolic Learning and Reasoning (NeSy), which started in 2005 at IJCAI-05 in 
Edinburgh, Scotland, and also gave rise to two Dagstuhl seminars on the topic, held in 2008 
and 2014.  
 
Both, the NeSy workshops and the seminars offer researchers in the areas of artificial 
intelligence (AI), neural computation, cognitive science, and neighboring disciplines 
opportunities to get together and share experience and practices concerning topics at the 
intersection between machine learning and knowledge representation and reasoning through 
the integration of neural computation and symbolic AI. 
 
Topics of interest for the 2015 edition of NeSy correspondingly include: 

- The representation of symbolic knowledge by connectionist systems. 
- Neural Learning theory. 
- Integration of logic and probabilities, e.g., in neural networks, but also more generally. 
- Structured learning and relational learning in neural networks. 
- Logical reasoning carried out by neural networks. 
- Integrated neural-symbolic learning approaches. 
- Extraction of symbolic knowledge from trained neural networks. 
- Integrated neural-symbolic reasoning. 
- Neural-symbolic cognitive models. 
- Biologically-inspired neural-symbolic integration. 
- Applications in robotics, simulation, fraud prevention, natural language processing, 

semantic web, software engineering, fault diagnosis, bioinformatics, visual 
intelligence, etc. 

 
 
NeSy’15 offers a diverse mixture of topics and formats, with two keynote lectures by Dan 
Roth (University of Illinois at Urbana-Champaign) and Gary F. Marcus (New York 
University), two invited papers from the IJCAI-15 main conference, and four contributed 
papers to the workshop itself ranging from technical to fairly philosophical considerations 
concerning different aspects relevant to neural-symbolic integration. 
 
 
We, as workshop organizers, want to thank the following members of the NeSy’15 program 
committee for their time and efforts in reviewing the submissions to the workshop and 
providing valuable feedback to accepted and rejected papers alike: 

- Artur D'Avila Garcez, City University London, UK  
- Ross Gayler, Melbourne, Australia 
- Ramanathan V. Guha, Google Inc., U.S.A.  
- Pascal Hitzler, Wright State University, U.S.A.  
- Steffen Hoelldobler, Technical University of Dresden, Germany  
- Frank Jaekel, University of Osnabrueck, Germany  
- Kai-Uwe Kuehnberger, University of Osnabrueck, Germany  
- Christopher Potts, Stanford University, U.S.A.  
- Ron Sun, Rensselaer Polytechnic Insitute, U.S.A.  
- Jakub Szymanik, University of Amsterdam, The Netherlands  
- Gerson Zaverucha, Federal University of Rio de Janeiro, Brazil 



These workshop proceedings are available online from the workshop webpage under 
http://www.neural-symbolic.org/NeSy15/. 
 
 
 
Osnabrück, 8th of July 2015 
Tarek R. Besold, Luis C. Lamb, Thomas Icard, and Risto Miikkulainen.1 
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Brazil; Thomas Icard is Assistant Professor of Philosophy and Symbolic Systems at Stanford University, USA; 
Risto Miikkulainen is Professor of Computer Science and Neuroscience at the University of Texas at Austin, 
USA. 
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Same same, but different?
A research program exploring differences in complexity between

logic and neural networks
Tarek R. Besold

Institute of Cognitive Science, University of Osnabrück
Osnabrück, Germany
tarek.besold@uos.de

Abstract
After an overview of the status quo in neural-
symbolic integration, a research program targeting
foundational differences and relationships on the
level of computational complexity between sym-
bolic and sub-symbolic computation and represen-
tation is outlined and proposed to the community.

1 Integrating symbolic and sub-symbolic
computation and representation

A seamless coupling between learning and reasoning is com-
monly taken as basis for intelligence in humans and, in close
analogy, also for the biologically-inspired (re-)creation of
human-level intelligence with computational means (see, e.g.,
[Valiant, 2013], p. 163). Still, one of the unsolved method-
ological core issues in human-level AI, cognitive systems
modelling, and cognitive and computational neuroscience is
the question of the integration between connectionist sub-
symbolic (i.e., “neural-level”) and logic-based symbolic (i.e.,
“cognitive-level”) approaches to representation, computa-
tion, (mostly sub-symbolic) learning, and (mostly symbolic)
higher-level reasoning.

AI researchers working on the modelling or (re-)creation
of human cognition and intelligence, and cognitive neurosci-
entists trying to understand the neural basis for human cog-
nition, have for years been interested in the nature of brain-
computation in general (see, e.g., [Adolphs, 2015]) and the
relation between sub-symbolic/neural and symbolic/cognitive
modes of representation and computation in particular (see,
e.g., [Dinsmore, 1992]). The brain has a neural structure
which operates on the basis of low-level processing of percep-
tual signals, but cognition also exhibits the capability to effi-
ciently perform abstract reasoning and symbol processing; in
fact, processes of the latter type seem to form the conceptual
cornerstones for thinking, decision-making, and other (also
directly behavior-relevant) mental activities (see, e.g., [Fodor
and Pylyshyn, 1988]).

Building on these observations – and taking into account
that hybrid systems loosely combining symbolic and sub-
symbolic modules into one architecture turned out to be in-
sufficient – agreement on the need for fully integrated neural-
cognitive processing has emerged (see, e.g., [Bader and Hit-
zler, 2005; d’Avila Garcez et al., 2015]). This has several

reasons also beyond the analogy to the described functioning
principles of the brain:

• In general, network-based approaches possess a higher
degree of biological motivation than symbol-based ap-
proaches, also outmatching the latter in terms of learning
capacities, robust fault-tolerant processing, and general-
ization to similar input. Also, in AI applications they
often enable flexible tools (e.g., for discovering and pro-
cessing the internal structure of possibly large data sets)
and efficient signal-processing models (which are bio-
logically plausible and optimally suited for a wide range
of applications).

• Symbolic representations are generally superior in terms
of their interpretability, the possibilities of direct control
and coding, and the extraction of knowledge when com-
pared to their (in many ways still black box-like) con-
nectionist counterparts.

• From a cognitive modelling point of view, sub-symbolic
representations for tasks requiring symbolic high-level
reasoning might help solving, among many others, the
problem with “too large” logical (epistemic) models
(see, e.g., [Gierasimczuk and Szymanik, 2011]) which
seem to lead to implausible computations from the rea-
soning agent’s perspective as documented, among oth-
ers, by [Degremont et al., 2014].

Concerning our current understanding of the relationship
and differences between symbolic and sub-symbolic com-
putation and representation, the cognitive-level “symbolic
paradigm” is commonly taken to correspond to a Von Neu-
mann architecture (with predominantly discrete and serial
computation and localized representations) and the neural-
level “sub-symbolic paradigm” mainly is conceptualized as
a dynamical systems-type approach (with distributed repre-
sentations and predominantly parallel and continuous com-
putations).

This divergence notwithstanding, both symbolic/cognitive
and sub-symbolic/neural models are considered from a com-
putability perspective equivalent in practice [Siegelmann,
1999], and from a tractability perspective in practice [van
Rooij, 2008] as well as likely in theory [van Emde Boas,
1990]. Also, [Leitgeb, 2005] showed that in principle there
is no substantial difference in representational or problem-
solving power between both paradigms (see Sect. 2 for fur-



ther discussion of the cited results).
Still, in general experiences from application studies con-

sistently and reliably show different degrees of suitability and
performance of the paradigms in different types of applica-
tion scenarios, with sub-symbolic/neural approaches offering
themselves, e.g., for effective and efficient solutions to tasks
involving learning and generalization, while high-level rea-
soning and concept composition are commonly addressed in
symbolic/cognitive frameworks. Unfortunately, general ex-
planations (and solutions) for this foundational dichotomy
this far have been elusive when using standard methods of
investigation.

In summary, symbolic/cognitive interpretations of artificial
neural network (ANN) architectures and accurate and feasi-
ble sub-symbolic/neural models of symbolic/cognitive pro-
cessing seem highly desirable: as important step towards the
computational (re-)creation of mental capacities, as possi-
ble sources of an additional (bridging) level of explanation
of cognitive phenomena of the human brain (assuming that
suitably chosen ANN models correspond in a meaningful
way to their biological counterparts), and also as important
part of future technological developments (also see Sect. 6).
But while there is theoretical evidence indicating that both
paradigms indeed share deep connections, how to explicitly
establish and exploit these correspondences currently remains
a mostly unsolved question.

2 Status quo in neural-symbolic integration
Neural-symbolic integration in AI, cognitive modelling,
and machine learning
Research on integrated neural-symbolic systems (especially
in AI and to a certain extent also in cognitive modelling) has
made significant progress over the last two decades (see, e.g.,
[Bader and Hitzler, 2005; d’Avila Garcez et al., 2015]); par-
tially, but not exclusively, in the wake of the development
of deep learning approaches to machine learning (see, e.g.,
[Schmidhuber, 2015]. Generally, what seem to be several im-
portant steps towards the development of integrated neural-
symbolic models have been made:

• From the symbolic perspective on the capacities of sub-
symbolic computation and representation, the “Proposi-
tional Fixation” (i.e., the limitation of neural models on
implementing propositional logic at best) has been over-
come, among others, in models implementing modal or
temporal logics with ANNs (see, e.g., [d’Avila Garcez
et al., 2008]).

• From the sub-symbolic perspective, neural computation
has been equipped with features previously (almost) ex-
clusively limited to symbolic models by adding top-
down governing mechanisms to modular, neural learn-
ing architectures, for example, through the use of “Con-
ceptors” [Jaeger, 2014] as computational principle.

• Deep learning approaches to machine learning – by
the high number of parameterized transformations per-
formed in the corresponding hierarchically structured
models – seem to, at first sight, also conceptually pro-
vide what can be interpreted as different levels of ab-

straction above and beyond mere low-level process-
ing. The resulting networks partially perform tasks
classically involving complex symbolic reasoning such
as, for instance, the labeling of picture elements or
scene description (see, e.g., [Karpathy and Li, 2014;
Vinyals et al., 2014]).

• Recently proposed classes of sub-symbolic models such
as “Neural Turing Machines” [Graves et al., 2014] or
“Memory Networks” [Weston et al., 2015] seem to
also architecturally narrow the gap between the (sub-
symbolic) dynamical systems characterization and the
(symbolic) Von Neumann architecture understanding.

Nonetheless, all these developments (including deep neu-
ral networks as layered recurrent ANNs) stay within the pos-
sibilities and limitations of the respective classical paradigms
without significantly changing the basic formal characteris-
tics of the latter.

Formal analysis of symbolic and sub-symbolic
computation and representation
According to our current knowledge, from a formal per-
spective – especially when focusing on actually physically-
realizable and implementable systems (i.e., physical fi-
nite state machines) instead of strictly abstract models
of computation, together with the resulting physical and
conceptual limitations – both symbolic/cognitive and sub-
symbolic/neural models seem basically equivalent.

As already mentioned in Sect. 1, notwithstanding par-
tially differing theoretical findings and discussions (as, e.g.,
given by [Tabor, 2009]), both paradigms are considered
computability-equivalent in practice [Siegelmann, 1999].
Also from a tractability perspective, for instance in [van
Rooij, 2008], equivalence in practice with respect to clas-
sical dimensions of analysis (i.e., interchangeability except
for a polynomial overhead) has been established, comple-
menting and supporting the theoretical suggestion of equiv-
alence by [van Emde Boas, 1990] in his Invariance Thesis.
Finally, [Leitgeb, 2005] provided an in principle existence
result, showing that there is no substantial difference in rep-
resentational or problem-solving power between dynamical
systems with distributed representations or symbolic systems
with non-monotonic reasoning capabilities.

Still, these results are only partially satisfactory: Although
introducing basic connections and mutual dependencies be-
tween both paradigms, the respective levels of analysis are
quite coarse and the found results are only existential in char-
acter. While establishing the in principle equivalence de-
scribed above, [Leitgeb, 2005] does not provide constructive
methods for how to actually obtain the corresponding sym-
bolic counterpart to a sub-symbolic model and vice versa.

Concerning the complexity and computability equiva-
lences, while the latter is supported by the results of [Leit-
geb, 2005], the former stays mostly untouched: While com-
ing to the same conclusion, i.e., the absence of substantial
differences between paradigms (i.e., differences at the level
of tractability classes), no further clarification or characteri-
zation of the precise nature and properties of the polynomial
overhead between symbolic and sub-symbolic approaches is
provided.



Summary
Although remarkable successes have been achieved within
the respective paradigms, the divide between the paradigms
persists, interconnecting results still either only address spe-
cific and non-generalizable cases or are in principle and
non-constructive, benchmark scenarios for principled com-
parisons (e.g., in terms of knowledge representation power
or descriptive complexity) between sub-symbolic and sym-
bolic models have still not been established, and questions
concerning the precise nature of the relationship and foun-
dational differences between symbolic/cognitive and sub-
symbolic/neural approaches to computation and representa-
tion still remain unanswered (see, e.g., [Isaac et al., 2014]): in
some cases due to a lack of knowledge for deciding the prob-
lem, in others due to a lack of tools and methods for properly
specifying and addressing the relevant questions.

3 Proposed research program
Focusing on the just described lack of tools and methods,
together with the insufficient theoretical knowledge about
many aspects of the respective form(s) of computation and
representation, in the envisioned research program, the clas-
sical findings concerning the relation and integration be-
tween the symbolic/cognitive and the sub-symbolic/neural
paradigm described in Sect. 1 shall be revisited in light of
new developments in the modelling and analysis of connec-
tionist systems in general (and ANNs in particular), and of
new formal methods for investigating the properties of gen-
eral forms of representation and computation on a symbolic
level.

To this end, taking into account the apparent empiri-
cal differences between the paradigms and (especially when
dealing with physically-realizable systems) assuming basic
equivalence on the level of computability, emphasis shall be
put on identifying and/or developing adequate formal tools
and investigating previously unconsidered aspects of exist-
ing equivalence results. Focus shall be put on the pre-
cise nature of the polynomial overhead as computational-
complexity difference between paradigms: Most complex-
ity results for symbolic/cognitive and sub-symbolic/neural
computations have been established using exclusively TIME
and SPACE as classical resources (see, e.g., [Thomas and
Vollmer, 2010; Sı́ma and Orponen, 2003]), and the tractabil-
ity equivalence between paradigms (see, e.g., [van Rooij,
2008]) mostly leaves out more precise investigations of the
remaining polynomial overhead. Against this background,
the working hypotheses for the program are that TIME and
SPACE are not always adequate and sufficient as resources
of analysis for elucidating all relevant properties of the re-
spective paradigms, and that there are significant characteris-
tics and explanations to be found on a more fine-grained level
than accessible by classical methods of analysis (settling on
the general tractability level).

The main line of research can be summarized in two con-
secutive questions (corresponding to the stated working hy-
potheses), one starting out from a more sub-symbolic, the
other from a more symbolic perspective:

• Question 1: Especially when considering sub-

symbolic/neural forms of computation and the associ-
ated dynamical systems conception, the adequacy and
exhaustiveness of the classical approaches to complex-
ity analysis using only TIME and SPACE as resources
for a fully informative characterization must be ques-
tioned. Are there more adequate resources which should
be taken into account for analysis?

• Question 2: Especially when considering the symbolic
level, are there more adequate approaches/methods of
analysis available than classical complexity theory, al-
lowing to take into account formalism- or calculus-
specific characterizations of computations or to perform
analyses at a more fine-grained level than tractability?

Finally, in an integrative concluding step taking into ac-
count the methods and findings resulting from the previous
two, a third question shall be investigated:

• Question 3: Can the in principle results from [Leit-
geb, 2005] be extended to more specific and/or construc-
tive correspondences between individual notions and/or
characterizations within the respective paradigms?

Answers to these questions (and the resulting refined tools
and methods) promise to contribute to resolving some of the
basic theoretical and practical tensions described in Sect. 1
and Sect. 2: Although both paradigms are theoretically undis-
tinguishable (i.e., equivalent up to a polynomial overhead) in
their general computational-complexity behavior using clas-
sical methods of analysis and characterization results, empir-
ical studies and application cases using state of the art ap-
proaches still show clear distinctions in suitability and feasi-
bility of the respective paradigms for different types of tasks
and domains without us having an explanation for this behav-
ior. Parts of this divergence might be explained by previously
unconsidered and unaccessible complexity-related properties
of the respective approaches and their connections to each
other.

4 Proposed approach/methodology
In order to address the three leading questions stated in
Sect. 3, the program relies on continuous exchange and
close interaction with researchers from cognitive science
and (computational and cognitive) neuroscience on the one
hand, and with logicians and theoretical computer scientists
on the other hand. The envisioned level of work is situated
between the (purely theoretical) development of methods in
complexity theory, network analysis, etc. and the (purely
applied) study of properties of computational and repre-
sentational paradigms by applying existing tools: Previous
work from the different fields and lines of research shall
be assessed and combined – in doing so, where necessary,
adapting or expanding the respective methods and tools –
into new means of analysis, which then shall subsequently
be applied to suitably selected candidate models representing
paradigmatic examples of symbolic or sub-symbolic repre-
sentations/computations with respect to features relevant for
the respective question(s) at hand.

The proposed research program is divided into three stages,
corresponding to the three questions from Sect. 3:



Adequate resources for analysis
TIME and SPACE are the standard resources considered
in classical complexity analyses of computational frame-
works. Correspondingly, most results concerning complex-
ity comparisons between symbolic and sub-symbolic mod-
els of computation also focus on these two dimensions (as
do, e.g., the aforementioned results by [van Rooij, 2008;
van Emde Boas, 1990]).

Still, the reading of TIME and SPACE as mostly relevant
resources for complexity analysis is closely connected to a
Turing-style conception of computation and a Von Neumann-
inspired architecture as machine model, working, e.g., with
limited memory. Especially when considering other compu-
tational paradigms with different characteristics, as, e.g., the
dynamical systems model commonly associated to the sub-
symbolic/neural paradigm, the exhaustiveness and adequate-
ness of TIME and SPACE for a full analysis of all relevant
computational properties has to be questioned. Instead, it
seems likely that additional resources specific to the respec-
tive model of computation and architecture have to be taken
into account in order to provide a complete characterization.

Thus, in a first stage of the program, popular network types
on the sub-symbolic/neural side shall be investigated for rele-
vant dimensions of analysis other than TIME and SPACE. Be-
sides the classical standard and recurrent approaches, models
from the the following (non-exhaustive) list could be consid-
ered: recurrent spiking neural networks (see, e.g. [Gerstner
et al., 2014]), Long Short-Term Memory networks and ex-
tensions thereof (see, e.g., [Monner and Reggia, 2012]), or
recurrent stochastic neural networks in form of Boltzmann
machines [Ackley et al., 1985] and restricted Boltzmann ma-
chines [Hinton, 2002].

Taking recurrent networks of spiking neurons as examples,
concerning candidates for relevant dimensions also measures
such as spike complexity (a bound for the total number of
spikes during computation; [Uchizawa et al., 2006]), conver-
gence speed (from some initial network state to the stationary
distribution; [Habenschuss et al., 2013]), sample complex-
ity (the number of samples from the stationary distribution
needed for a satisfactory computational output; [Vul et al.,
2014]), or network size and connectivity seem relevant.

These and similar proposals for the other network mod-
els shall be critically assessed (both theoretically and in com-
putational experiments, testing hypotheses and validating the
relevance of theoretical results) and, where possible, put into
a correspondence relation with each other, allowing to mean-
ingfully generalize between different sub-symbolic/neural
models and provide general characterizations of the respec-
tive computations.

At the end of this stage, new proposals for adequate
resources usable in refined complexity analyses for sub-
symbolic/neural computation, together with application ex-
amples in terms of proof of concept analyses of popular
paradigms, will be available.

Adequate methods of analysis
In parallel to and/or following the search for more ad-
equate resources for complexity analyses of mostly sub-
symbolic/neural models of computation, in a second stage

of the program emphasis shall be shifted towards the sym-
bolic/cognitive side. While staying closer to the classical con-
ception of complexity in terms of TIME and SPACE, recent
developments in different fields of theoretical computer sci-
ence shall be combined into tools for more model-specific and
fine-grained analyses of computational properties.

Parameterized-complexity theory (see, e.g., [Downey and
Fellows, 1999]) makes the investigation of problem-specific
complexity characteristics possible, while tools such as,
e.g., developed in the theory of proof-complexity (see, e.g.,
[Krajı́cek, 2005]) allow for for more varied formalism- or
calculus-specific characterizations of the respective computa-
tions than currently done. Additionally, tools from descrip-
tive complexity theory (see, e.g., [Immerman, 1999]) and
work from model-theoretic syntax (see, e.g., [Rabin, 1965])
seem likely to offer chances for shedding light on complex-
ity distinctions below the tractability threshold (i.e., for ex-
ploring the precise nature of the polynomial overhead) and to
allow for more fine-grained and discriminative comparisons
between paradigms and models.

Thus, results from the just mentioned fields/techniques
could be examined for their applicability to better charac-
terizing symbolic computation and to potentially establishing
conceptual connections to characterizations of sub-symbolic
computation from the previous stage:

• Parameterized-complexity theory: Taking into account
problem- and application-specific properties of (families
of) problems and connecting these to results describing
specific properties of sub-symbolic or symbolic compu-
tation and representation, trying to explain the different
suitability of one or the other paradigm for certain types
of tasks.

• Descriptive complexity theory and model-theoretic syn-
tax: Attempting to explore complexity distinctions be-
tween different forms of symbolic and between sym-
bolic and sub-symbolic computation also in more fine-
grained ways than by mere tractability considerations
(e.g., also taking into account the polynomial-time hi-
erarchy and the logarithmic-time hierarchy).

• Proof-complexity theory: Taking into account
formalism- and calculus-specific properties of symbolic
computations, and trying to map these onto properties
of specific sub-symbolic models.

At the end of this stage, proposals for refined methods
of analysis for forms of symbolic/cognitive computation and
application examples in terms of proof of concept analyses,
together with suggestions for correspondences to models of
sub-symbolic/neural computation, will be available.

Correspondences between paradigms
In a third and final stage of the program, by combining the
results of the previous stages, additional dimensions will be
added to previous analyses and established equivalence re-
sults, and the precise nature of the polynomial overhead as
computational difference between paradigms will be better
explained. Also, the outcomes of previous stages shall be in-
tegrated where meaningfully possible, ideally providing the
foundations for a general set of refined means of analysis for



future comparative investigations of symbolic/cognitive and
sub-symbolic/neural computation.

Depending on previous outcomes, some of the following
(interrelated) questions probably can be addressed:

• Given the in principle equivalence between (sym-
bolic/cognitive) non-monotonic logical systems and
(sub-symbolic/neural) dynamical systems, is it possible
to establish complexity-based systematic conceptual re-
lationships between particular logical calculi and differ-
ent types of sub-symbolic networks?

• Can adaptations in network structure and/or (the ar-
tificial equivalent of) synaptic dynamics in a neural
representation in a systematic way be related to re-
representation in a logic-based representation, or (alter-
natively) is there a systematic correspondence on the
level of change of calculus?

• Can changes in network type in a neural representa-
tion in a systematic way be related to changes of non-
monotonic logic in a symbolic representation?

• Can the correspondences and differences between novel
network models approximating classical symbolic ca-
pacities (as, e.g., top-down control) or architectures (as,
e.g., a Von Neumann machines) and the original sym-
bolic concepts be characterized in a systematic way?

At the end of this stage, partial answers to some of the
stated questions, together with proposals for future lines of
investigation continuing the work started in the program, will
be available. Also, suggestions for new tools and methods
for the comparative analysis of symbolic/cognitive and sub-
symbolic/neural computation will be available.

5 Expected results/outcomes
More adequate and refined tools and methods for relat-
ing and comparing paradigms: New methodological ap-
proaches and updated and refined formal tools for better and
more adequately analyzing and characterizing the nature and
mechanisms of representation and computation in the corre-
sponding paradigm(s) will be developed.

Alternative resources complementing TIME and SPACE
for the characterization of properties of (especially sub-
symbolic/neural) computation will be provided. Emphasis
will be put on making model-specific properties of the re-
spective computing mechanisms accessible.

Also, alternative methods complementing the classical
complexity-theoretical approach to the characterization of
properties of (especially symbolic/cognitive) computation
will be provided. Emphasis will be put on making formalism-
or calculus-specific properties of the respective computing
mechanisms accessible, and on offering more fine-grained in-
sights than available in the classical framework.

Whilst by itself being useful in more theoretical work,
the results shall be maximally informative and usable in the
context of neural-cognitive integration in AI, cognitive and
computational neuroscience, and (computational) cognitive
science.

Principled correspondences between specific no-
tions/characterizations of paradigms: New perspec-
tives on the relation between symbolic/cognitive and
sub-symbolic/neural representation and computation will
be explored and a better understanding of the respective
approach(es) and their interaction (with a strong orientation
towards a future integration of conceptual paradigms, of
levels of explanation, and of involved scientific disciplines)
shall be established. Emphasis will be put on understanding
the interaction between model-specific changes in one
paradigm and corresponding adaptations of the respective
conceptual or formal counterpart within the other paradigm.

6 Potential impact of the proposed program
Integrating symbolic/cognitive and sub-symbolic/neural
paradigms of computation and representation not only helps
to solve foundational questions within and to strengthen
the interface between AI/computer science and cognitive
and computational neuroscience, but will also have lasting
impact in present and future technological applications and
significant possibilities of industrial valorization:

Following the advent of the internet/WWW, ubiquitous
sensors and ambient intelligence systems performing high-
level and complex reasoning based on low-level data and sig-
nals will be key to the future development of advanced intelli-
gent applications and smart environments. Whilst “Big Data”
and statistical reasoning can provide for current applications,
many real-world scenarios in the near future will require re-
liable reasoning also based on smaller samples of data, either
due to the need for immediate (re)action without the time de-
lay or effort required for obtaining additional usable data, or
due to the need of dealing with rare events offering too few
similar data entries as to allow for the application of standard
statistic-driven approaches. The corresponding systems will,
thus, have to make use of complex abstract reasoning mecha-
nisms (which then will have to be used to inform subsequent
low-level sensing and processing steps in an action-oriented
continuous sensing–processing–reasoning cycle).

This still poses enormous challenges in terms of techno-
logical realizability due to the remaining significant divide
between symbolic and sub-symbolic paradigms of computa-
tion and representation. Here, a better understanding of the
relationship between the paradigms and their precise differ-
ences in computational and representational power will open
up the way to a better integration between both.
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Abstract

We present SGDPLL(T ), an algorithm that solves
(among many other problems) probabilistic infer-
ence modulo theories, that is, inference problems
over probabilistic models defined via a logic the-
ory provided as a parameter (currently, equalities
and inequalities on discrete sorts). While many so-
lutions to probabilistic inference over logic repre-
sentations have been proposed, SGDPLL(T ) is the
only one that is simultaneously (1) lifted, (2) exact
and (3) modulo theories, that is, parameterized by
a background logic theory. This offers a founda-
tion for extending it to rich logic languages such
as data structures and relational data. By lifted,
we mean that our proposed algorithm can leverage
first-order representations to solve some inference
problems in constant or polynomial time in the do-
main size (the number of values that variables can
take), as opposed to exponential time offered by
propositional algorithms.

1 Introduction

Uncertainty representation, inference and learning are im-
portant goals in Artificial Intelligence. In the past few
decades, neural networks and graphical models have made
much progress towards those goals, but even today their main
methods can only support very simple types of representa-
tions (such as tables and weight matrices) that exclude log-
ical constructs such as relations, functions, arithmetic, lists
and trees. Moreover, such representations require models in-
volving discrete variables to be specified at the level of their
individual values, making generic algorithms expensive for
finite domains and impossible for infinite ones.

For example, consider the following conditional probabil-
ity distributions, which would need to be either automatically
expanded into large tables (a process called propositionaliza-
tion), or manipulated in a manual, ad hoc manner, in order
to be processed by mainstream neural networks or graphical
model algorithms:

• P (x > 10 | y �= 98 ∨ z ≤ 15) = 0.1,
for x, y, z ∈ {1, . . . , 1000}

• P (x �= Bob | friends(x ,Ann)) = 0.3

The Statistical Relational Learning [Getoor and Taskar,
2007] literature offered more expressive languages but relied
on conversion to conventional representations to perform in-
ference, which can be very inefficient. To counter this, lifted
inference [Poole, 2003; de Salvo Braz, 2007] offered solu-
tions for efficiently processing logically specified models, but
with languages of limited expressivity (such as function-free
ones) and algorithms that are hard to extend. Probabilistic
programming [Goodman et al., 2012] has offered inference
on full programming languages, but relies on approximate
methods on the propositional level.

We present SGDPLL(T ), an algorithm that solves (among
many other problems) probabilistic inference on models de-
fined over logic representations. Importantly, the algorithm
is agnostic with respect to which particular logic theory is
used, which is provided to it as a parameter. In this paper,
we use the theory consisting of equalities over finite discrete
types, and inequalities over bounded integers, as an example.
However, SGDPLL(T ) offers a foundation for extending it to
richer theories involving relations, arithmetic, lists and trees.
While many algorithms for probabilistic inference over logic
representations have been proposed, SGDPLL(T ) is distin-
guished by being the only existing solution that is simultane-
ously (1) lifted, (2) exact and (3) modulo theories.

SGDPLL(T ) is a generalization of the Davis-Putnam-
Logemann-Loveland (DPLL) algorithm for solving the sat-
isfiability problem. SGDPLL(T ) generalizes DPLL in three
ways: (1) while DPLL only works on propositional logic,
SGDPLL(T ) takes (as mentioned) a logic theory as a param-
eter; (2) it solves many more problems than satisfiability on
boolean formulas, including summations over real-typed ex-
pressions, and (3) it is symbolic, accepting input with free
variables (which can be seen as constants with unknown val-
ues) in terms of which the output is expressed.

Generalization (1) is similar to the generalization of DPLL
made by Satisfiability Modulo Theories (SMT) [Barrett et al.,
2009; de Moura et al., 2007; Ganzinger et al., 2004], but SMT
algorithms require only satisfiability solvers of their theory
parameter to be provided, whereas SGDPLL(T ) may require
solvers for harder tasks (including model counting) that de-
pend on the theory, including symbolic model counters, i.e.,
Figures 1 and 2 illustrate how both DPLL and SGDPLL(T )
work and highlight their similarities and differences.



2 Intuition: DPLL, SMT and SGDPLL(T )

xyz  (x  y)  (  x  y  z) 

yz  y yz  y  z 

z true z false z  z z  true 

x = false x = true 

y = false y = true y = false y = true 

  

     

false true 

z = false z = true   

Figure 1: Example of DPLL’s search tree for the existence of sat-
isfying assignments. We show the full tree even though the search
typically stops when the first satisfying assignment is found.



          
   

   
    



     




 

   
  

 
  





 
  

 
  

    
   
   
  



    
   
   
  

   
    
    
 

  
  



 




 

Figure 2: SGDPLL(T ) for summation with a background theory of
inequalities on bounded integers. It splits the problem according to
literals in the background theory, simplifying it until the sum is over
a literal-free expression. Some of the splits are on a free variable (y)
and create if-then-else expressions which are symbolic conditional
solutions. Other splits are on quantified variables (x, z), and split the
corresponding quantifier. When the base case with a literal-free ex-
pression is obtained, the specific theory solver computes its solution
(white boxes). This figure does not show how the conditional sub-
solutions are summed together; see end of Section 4.1 for examples
and details.

The Davis-Putnam-Logemann-Loveland (DPLL) algo-
rithm [Davis et al., 1962] solves the satisfiability (or SAT)

problem. SAT consists of determining whether a propo-
sitional formula F , expressed in conjunctive normal form
(CNF) has a solution or not. A CNF is a conjunction (∧) of
clauses where a clause is a disjunction (∨) of literals, where
a literal is a proposition (e.g., x) or its negation (e.g., ¬x).
A solution to a CNF is an assignment of values from the set
{0, 1} or {TRUE, FALSE} to all Boolean variables (or propo-
sitions) in F such that at least one literal in each clause in F
is assigned to TRUE.

Algorithm 1 shows a simplified and non-optimized version
of DPLL which operates on CNF formulas. It works by re-
cursively trying assignments for each proposition, one at a
time, simplifying the CNF, and terminating if F is a constant
(TRUE or FALSE). Figure 1 shows an example of the execu-
tion of DPLL. Although simple, DPLL is the basis for modern
SAT solvers which improve it by adding sophisticated tech-
niques and optimizations such as unit propagation, watch lit-
erals, and clause learning [Eén and Sörensson, 2003].

Algorithm 1 A version of the DPLL algorithm.

DPLL(F )

F : a formula in CNF.
simplify : simplifies boolean formulas given a condition
(e.g., simplify(x ∧ y|¬y) = FALSE)

1 if F is a boolean constant
2 return F
3 else v ← pick a variable in F
4 Sol1 ← DPLL(simplify(F | v))
5 Sol2 ← DPLL(simplify(F |¬v))
6 return Sol1 ∨ Sol2

Satisfiability Modulo Theories (SMT) algorithms [Bar-
rett et al., 2009; de Moura et al., 2007; Ganzinger et al.,
2004] generalize DPLL and can determine the satisfiability of
a Boolean formula expressed in first-order logic, where some
function and predicate symbols have additional interpreta-
tions. Examples of predicates include equalities, inequalities,
and uninterpreted functions, which can then be evaluated us-
ing rules of real arithmetic. SMT algorithms condition on the
literals of a background theory T , looking for a truth assign-
ment to these literals that satisfies the formula. While a SAT
solver is free to condition on a proposition, assigning it to ei-
ther TRUE or FALSE regardless of previous choices (truth val-
ues of propositions are independent from each other), an SMT
solver needs to also check whether a choice for one literal is
consistent with the previous choices for others, according to
T . This is done by a theory-specific model checker provided
to the SMT algorithm as a parameter.

SGDPLL(T ) is, like SMT algorithms, modulo the-

ories but further generalizes DPLL by being symbolic

and quantifier-parametric (thus “Symbolic Generalized
DPLL(T )”). These three features can be observed in the prob-



lem being solved by SGDPLL(T ) in Figure 2:
�

x,z∈{1,...,100}

(ifx > y ∧ y �= 5 then 0.1 else 0.9)

× (if z < y ∧ y < 3 then 0.4 else 0.6)

In this example, the problem being solved requires more
than propositional logic theory since equality, inequality and
other functions are involved. The problem’s quantifier is a
summation, as opposed to DPLL and SMT’s existential quan-
tification ∃. Also, the output will be symbolic in y because
this variable is not being quantified, as opposed to DPLL and
SMT algorithms which implicitly assume all variables to be
quantified.

Before formally describing SGDPLL(T ), we will briefly
comment on its three key generalizations.

Quantifier-parametric Satisfiability can be seen as com-
puting the value of an existentially quantified formula; the
existential quantifier can be seen as an indexed form of dis-
junction, so we say it is based on disjunction. SGDPLL(T )
generalizes SMT algorithms with respect to the problem be-
ing solved by computing expressions quantified by any quan-

tifier
�

based on an associative commutative operation

⊕. Examples of (
�

, ⊕, ) pairs are (∀,∧), (∃,∨), (
�

,+),
and (

�
,×). Therefore SGDPLL(T ) can solve not only sat-

isfiability (since disjunction is associative commutative), but
also validity (using the ∀ quantifier), sums, products, model
counting, weighted model counting, maximization, and many
more.

Modulo Theories SMT generalizes the propositions in
SAT to literals in a given theory T , but the theory con-
necting these literals remains that of boolean connectives.
SGDPLL(T ) takes a theory T = (TC , TL), composed of
a constraint theory TC and an input theory TL. DPLL
propositions are generalized to literals in TC in SGDPLL(T ),
whereas the boolean connectives are generalized to functions
in TL. In the example above, TC is the theory of inequali-
ties on bounded integers, whereas TL is the theory of +,×,
boolean connectives and if then else . TL is used simply
for the simplifications after conditioning, which takes time at
most linear in the input expression size.

Symbolic Both SAT and SMT can be seen as computing the
value of an existentially quantified formula in which all vari-
ables are quantified, and which is always equivalent to either
TRUE or FALSE. SGDPLL(T ) further generalizes SAT and
SMT by accepting quantifications over any subset of the vari-
ables in its input expression (including the empty set). The
non-quantified variables are free variables, and the result of
the quantification will typically depend on them. Therefore,
SGDPLL(T )’s output is a symbolic expression in terms of
free variables. Section 3 shows an example of a symbolic
solution.

3 T -Problems and T -Solutions

SGDPLL(T ) receives a T -problem (or, for short, simply a
problem) of the form

�

x1:C1

· · ·
�

xm:Cm

E,

where, for each i = 1, . . . ,m, xi is an index variable quanti-
fied by

�
and subject to constraint Ci in TC , and E an expres-

sion in TL. Ci is assumed to be equivalent to a conjunction of
literals in TC . There may be free variables, that is, variables
that are not quantified, present in both the constraints and E.
An example of a problem is

�

y

�

x:3≤x∧x≤y

ifx > 4 then y else 10 + z,

for x, y bounded integer variables in, say, {1, . . . , 20}.
A T -solution (or, for short, simply a solution) to a prob-

lem is a quantifier-free expression in TL equivalent to the
problem. It can be an unconditional solution, contain-
ing no literals in TC , or a conditional solution of the form
ifL thenS1 elseS2, where L is a literal in TC and S1, S2

are two solutions (either conditional or unconditional). Note
that, in order for the solution to be equivalent to the problem,
only variables that were free (not quantified) can appear in
the literal L. In other words, a solution can be seen as a deci-
sion tree on literals, with literal-free expressions in the leaves,
such that each leaf is equivalent to the original problem, pro-
vided that the literals on the path to it are true. For example,
the problem

�

x:1≤x∧x≤10

if y > 2 ∧ w > y then y else 4

has an equivalent conditional solution

if y > 2 then ifw > y then 10y else 40 else 40.

4 SGDPLL(T )

In this section we provide the details of SGDPLL(T ), de-
scribed in Algorithm 2 and exemplified in Figure 2. We first
give an informal explanation guided by examples, and then
provide a formal description of the algorithm.

4.1 Informal Description of SGDPLL(T )

Base Case Problems

A problem is in base case 0 if and only if m = 1, E contains
no literals in TC and C is in a base form specific to the theory
T , which its solver must be able to recognize.

In our running example, we a slight variant of difference

arithmetic [de Moura et al., 2007], with atoms of the form
x < y or x ≤ y + c, where c is an integer constant. Strict
inequalities x < y + c can be represented as x ≤ y + c − 1
and the negation of x ≤ y + c is y ≤ x − c − 1. From now
on, we shorten a ≤ x ∧ x ≤ b to a ≤ x ≤ b.

The base case for difference arithmetic is
�

x:l≤x≤u E,
where E is a polynomial and x’s lower and upper bounds l
and u are either variables, or differences between a variable
and an integer constant. One example is

�
x:y+1≤x≤z−3 y

2+



4x3. When l ≤ u, Faulhaber’s formula [Knuth, 1993] allows
us to compute a new polynomial E� (in the variables other
than x) equivalent to the problem. Moreover, this can be done
(a little surprisingly) in time only dependent in the degree of
the polynomial E, not on the domain size of x or the distance
u − l. 1 If l ≤ u is false, there are no values of x satisfying
the constraint, and the problem results in 0. Therefore, the
solution is the conditional if l ≤ u thenE� else 0.

A base case 1 problem is such that m > 1 and
�

x:Cm
E

satisfies base case 0, yielding solution S. In this case, we
reduce the problem to the simpler

�

x1:C1

· · ·
�

xm−1:Cm−1

S.

Non-Base case Problems

For non-base cases, SGDPLL(T ) mirrors DPLL, by selecting
a splitter literal to split the problem on, generating two sim-
pler problems. This eventually leads to base case problems.

The splitter literal L can come from either the expression
E, to bring it closer to being literal-free, or from Cm, to bring
it closer to satisfying the base form prerequisites. We will see
examples shortly.

Once the splitter literal L is chosen, it splits the problem
in two possible ways: if L does not contain any of the in-
dices xi, it causes an if-splitting in which L is the condition
of an if then else expression and the two simpler sub-
problems are its then and else clauses; if L contains at least
one index, it causes a quantifier-splitting based on the latest
of the indices it contains.

For an example of an if-splitting on a literal coming from
Cm, consider the problem

�

z

�

x:y≤x∧3≤x∧x≤10

y2.

This is not a base case because the constraint includes two
lower bounds for x (y and 3), which are not redundant be-
cause we do not know which one is the smallest. We can
however reduce the problem to base case ones by splitting
the problem according to y < 3:

if y < 3 then
�

z

�

x:3≤x≤10

y2 else
�

z

�

x:y≤x≤10

y2.

For another example of an if-splitting, but on a literal com-
ing from E this time, consider

�

z

�

x:3≤x≤10

if y > 4 then y else 10.

This is not a base case because E is not literal-free. However,
splitting on y > 4 reduces to

if y > 4 then
�

z

�

x:3≤x≤10

y else
�

z

�

x:3≤x≤10

10,

containing two base cases.

1This takes a number of steps, which we omit for lack of space,
but it is not hard to do.

For an example of quantifier-splitting on a literal coming
from E, consider this problem in which the splitter literal
contains at least one index (here it contains two, x and z):

�

x:3≤x≤10

�

z

ifx > 4 then y else 10 + z.

In this case, we cannot simply move the literal outside the
scope of the sum in its latest index x. Instead, we add the
literal and its negation to the constraint on x, in two new sub-
problems:

=
� �

x:x>4∧3≤x≤10

�

z

y
�

+
� �

x:x≤4∧3≤x≤10

�

z

10 + z
�

=
� �

x:5≤x<10

�

z

y
�

+
� �

x:3≤x≤4

�

z

10 + z
�
.

In this example, the two sub-solutions are unconditional poly-
nomials, and their sum results in another unconditional poly-
nomial, which is a valid solution. However, if at least one
of the sub-solutions is conditional, their direct sum is not a
valid solution. In this case, we need to combine them with a
distributive transformation of ⊕ over if then else :

(ifx < 4 then y2 else z) + (if y > z then 3 elsex)

≡ if x < 4 then y2 + (if y > z then 3 elsex)

else z + (if y > z then 3 elsex)

≡ if x < 4 then if y > z then y2 + 3 else y2 + x

else if y > z then z + 3 else z + x.

4.2 Formal Description of SGDPLL(T )

We now present a formal version of the algorithm. We start
by specifying the basic tasks the given T -solver is required
to solve, and then show can we can use it to solve any T -
problems.

Requirements on T solver

To be a valid input for SGDPLL(T ), a T -solver ST for theory
T = (TL, TC) must solve two tasks:

• Given a problem
�

x:C E, ST must be able to recognize
whether C is in base form and, if so, provide a solution
baseT (

�
x:C E) for the problem.

• Given a conjunction C not in base form, ST must pro-
vide a tuple splitT (C) = (L,CL, C¬L) such that L ∈
TC , and conjunctions CL and C¬L are smaller than C
and satisfy L ⇒ (C ⇔ CL) ∧ ¬L ⇒ (C ⇔ C¬L).

The algorithm is presented in Figure 2. Note that it does
not depend on difference arithmetic theory, but can use a
solver for any theory satisfying the requirements above.
Note also that conditional solution may contain redundant

literals, and that optimizations such as unit propagation and
watch literals can be employed. These issues can be ad-
dressed but we omit the details for lack of space.

If the T -solver implements the operations above in polyno-
mial time in the number of variables and constant time in the
domain size (the size of their types), then SGDPLL(T ), like
DPLL, will have time complexity exponential in the num-
ber of literals and, therefore, in the number of variables, and



be independent of the domain size. This is the case for the
solver for difference arithmetic and will be typically the case
for many other solvers.

5 Probabilistic Inference Modulo Theories

Let P (X1 = x1, . . . , Xn = xn) be the joint probability dis-
tribution on random variables {X1, . . . , Xn}. For any tuple
of indices t, we define Xt to be the tuple of variables indexed
by the indices in t, and abbreviate the assignments (X = x)
and (Xt = xt) by simply x and xt, respectively. Let t̄ be the
tuple of indices in {1, . . . , n} but not in t.

The marginal probability distribution of a subset of vari-
ables Xq is one of the most basic tasks in probabilistic infer-
ence, defined as P (xq) =

�
xq̄

P (x) which is a summation
on a subset of variables occurring in an input expression, and
therefore solvable by SGDPLL(T ).

If P (X = x) is expressed in the language of input and
constraint theories appropriate for SGDPLL(T ) (such as the
one shown in Figure 2), then it can be solved by SGDPLL(T ),
without first converting its representation to a much larger one
based on tables. The output will be a summation-free expres-
sion in the assignment variables xq representing the marginal
probability distribution of Xq .

Belief updating consists of computing the posterior prob-

ability of Xq given evidence on Xe, which is defined as
P (xq|xe) = P (xq, xe)/P (xe) which can be computed
with two applications of SGDPLL(T ), one for the marginal
P (xq, xe) and another for P (xe).

Applying SGDPLL(T ) in the manner above does not take
advantage of factorized representations of joint probability
distributions, a crucial aspect of efficient probabilistic infer-
ence. However, it can be used as a basis for an algorithm,
Symbolic Generalized Variable Elimination modulo theories
(SGVE(T )), analogous to Variable Elimination (VE) [Zhang
and Poole, 1994] for graphical models, that exploits factoriza-
tion. Suppose P (x) is represented as a product of real-valued
functions (called factors) fi: P (x) = f1(xt1)×· · ·×fm(xt1)
and we want to compute a summation over it:

�
xq̄

f1(xt1)×
· · · × fm(xtm) where q and ti are tuples. We now choose a
variable xi for i �∈ q to eliminate first. Let g be the product of
all factors in which xi does not appear, h be the product of all
factors in which xi does appear, and b be the tuple of indices
of variables other than xi appearing in h. Then we rewrite the
above as

�

xq̄,̄i

g(xī)
�

xi

h(xi, xb) =
�

xq̄,̄i

g(xī)h
�(xb)

where h� is a summation-free factor computed by
SGDPLL(T ) and equivalent to the innermost summa-
tion. We now have a problem of the same type as originally,
but with one less variable, and can proceed until all variables
in xq̄ are eliminated. SGDPLL(T ) being symbolic allows us
to compute h� without iterating over all values to xi.

SGDPLL(T ) contributes to the symbolic connectionist lit-
erature by providing a way to incorporate logic representa-
tions to systems dealing with uncertainty. If the variables and
data used by SGDPLL(T ) in a given system are of a sub-
symbolic, distributed nature, then this system will exhibit ad-

Algorithm 2 Symbolic Generalized DPLL (SGDPLL(T )),
omitting pruning, heuristics and optimizations.

SGDPLL(T )(
�

x1:C1
· · ·

�
xm:Cm

E)

Returns a T -solution for the given T -problem.

1 if split(
�

xm:Cm
E) indicates “base case”

2 S ← baseT (
�

xm:Cm
E)

3 if m = 1 // decide if base case 0 or 1
4 return S
5 else

6 P ←
�

x1:C1
· · ·

�
xm−1:Cm−1

S
7 else

8 // split returned (L,
�

xm:C�
m
E�,

�
xm:C��

m
E��)

9 if L does not contain any indices
10 splittingType ← “if”
11 Sub1 ←

�
x1:C1

· · ·
�

xm:C�
m
E�

12 Sub2 ←
�

x1:C1
· · ·

�
xm:C��

m
E��

13 else // L contains a latest index xj :
14 splittingType ← “quantifier”
15 Sub1 ←

�
x1:C1

· · ·
�

xj :Cj∧L · · ·
�

xm:C�
m
E�

16 Sub2 ←
�

x1:C1
· · ·

�
xj :Cj∧¬L · · ·

�
xm:C��

m
E��

17 S1 ← SGDPLL(T )(Sub1)
18 S2 ← SGDPLL(T )(Sub2)
19 if splittingType == “if”
20 return the expression ifL thenS1 elseS2

21 else return combine(S1, S2)

SPLIT(
�

x:C E)

1 if E contains a literal L
2 E� ← E with L replaced by TRUE
3 E�� ← E with L replaced by FALSE
4 return (L,

�
C E�,

�
C E��)

5 elseif C is not recognized as base form by the T -solver
6 (L,C �, C ��) ← splitT (C)
7 return (L,

�
C� E,

�
C�� E)

8 else return “base case”

COMBINE(S1, S2)

1 if S1 is of the form ifC1 thenS11 elseS12

2 return the following if-then-else expression:
3 if C1

4 then combine(S11, S2)
5 else combine(S12, S2)
6 elseif S2 is of the form ifC2 thenS21 elseS22

7 return the following if-then-else expression:
8 if C2

9 then combine(S1, S21)
10 else combine(S1, S22)
11 else return S1 ⊕ S2



vantages of connectionism, observed on logic representations
instead of simpler propositional representations.

6 Evaluation

We did a very preliminary comparison of SGDPLL(T )-based
SGVE(T ), using an implementation of an equality theory
(=, �= literals only) symbolic model counter, to the state-
of-the-art probabilistic inference solver variable elimination
and conditioning (VEC) [Gogate and Dechter, 2011], on
randomly generated probabilistic graphical models based on
equalities formulas, on a Intel Core i7 notebook. We ran
both SGVE(T ) and VEC on a random graphical model with
10 random variables, 5 factors, with formulas of depth and
breadth (number of arguments per sub-formula) 2 for random
connectives ∨ and ∧. SGVE(T ) took 1.5 seconds to com-
pute marginals for all variables (unsurprisingly, irrespective
of domain size). We grounded this model for domain size
16 to provide the table-based input required by VEC, which
then took 30 seconds to compute all marginals. The largest
grounded table given to VEC as input had 6 random variables
and therefore around 16 million entries.

7 Related work

SGDPLL(T ) is a lifted inference algorithm [Poole, 2003;
de Salvo Braz, 2007; Gogate and Domingos, 2011], but
the proposed lifted algorithms so far have concerned them-
selves only with relational formulas with equality. We have
not yet developed a relational model counter but presented
one or inequalities, the first in the lifted inference literature.
SGDPLL(T ) generalizes several algorithms that operate on
mixed networks [Mateescu and Dechter, 2008] – a framework
that combines Bayesian networks with constraint networks,
but with a much richer representation.

8 Conclusion and Future Work

We have presented SGDPLL(T ) and its derivation SGVE(T ),
the first algorithms formally able to solve a variety of model
counting problems (including probabilistic inference) mod-
ulo theories, that is, capable of being extended with theories
for richer representations than propositional logic, in a lifted
and exact manner. Future work includes additional theories
of interest mainly among them those for uninterpreted rela-
tions (particularly multi-arity functions) and arithmetic; mod-
ern SAT solver optimization techniques such as watched liter-
als and unit propagation anytime approximation schemes that
offer guaranteed bounds on approximations that converge to
the exact solution.
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Abstract
We present a new connectionist network to com-
pute skeptical abduction. Combined with the CORE
method to compute least fixed points of semantic
operators for logic programs, the network is a pre-
requisite to solve human reasoning tasks like the
suppression task in a connectionist setting.

1 Introduction
Various human reasoning tasks like the suppression and the
selection tasks can be adequately modeled in a computational
logic approach based on the weak completion semantics [11;
6; 4; 5]. Therein, knowledge is encoded as logic program
and interpreted under the Łukasiwiecz (Ł) logic [18]. As
shown in [11] the weak completion of each program ad-
mits a least Ł-model and reasoning is performed with respect
to these least Ł-models. The least Ł-models can be com-
puted as least fixed points of a particular semantic operator
which was introduced in [22]. In addition, some tasks re-
quire abduction and, in particular, it has been shown in [12;
6] that skeptical abduction is needed as otherwise, if credu-
lous abduction is applied, the approach is no longer adequate.

As shown in [10], the above mentioned semantic opera-
tor can be computed by a three-layer feed-forward network
within the CORE method [8; 2], where the input as well as
the output layer represent interpretations. By connecting the
units in the output layer to the units in the input layer, the
corresponding recurrent network converges to a stable state
encoding the least fixed point of the semantic operator.

In order to develop a fully connectionist network for the
suppression and the selection tasks we need to add abduc-
tion to the recurrent networks mentioned in the previous para-
graph. Unfortunately, to the best of our knowledge, the only
connectionist models for abduction compute credulous con-
clusions [3]. Hence, there is the need to develop a connec-
tionist model for skeptical abduction and we will do this in
this paper for two-valued logic.

2 Preliminaries
We introduce the general notation and terminology that will
be used throughout the paper, based on [17; 13] and [14].

∗The authors are listed alphabetically. Luis Palacios was sup-
ported by the European Master’s Program in Computational Logic

A (propositional logic) program is a finite set of (program)
clauses of the form A ← L1 ∧ . . . ∧ Ln, n ≥ 0, where A is
an atom and Li, 1 ≤ i ≤ n, are literals. A is called head and
L1 ∧ . . .∧Ln is called body. We also refer to the body as the
set {L1, . . . , Ln}. If the body is empty we write A. atoms(P)
denotes the set of atoms occurring in P . def(P) = {A |

A ← body ∈ P} is the set of defined atoms and undef(P) =
atoms(P) \ def(P) is the set of undefined atoms in P .

An interpretation I is a mapping from the set of ground
atoms to {�,⊥}. M is a model of P if it is an interpretation
that maps each clause occurring in P to �. M is a minimal
model of P iff there is no other model M� s.t. M� ⊂ M. If
P has only one minimal model, then this is its least model.

The knowledge represented by a logic program P can be
captured by the TP operator [1]. Given an interpretation I and
a program P , TP is defined as TP(I) = {A | A ← body ∈ P

and I(body) = �}. For acceptable programs [7], TP admits
a least fixed point denoted by T lfp

P . Moreover, this fixed point
is the least model of P [7]. We write P |=lfp F iff formula F
holds in the least fixed point of TP .

We consider the abductive framework AF = �P,AP , IC,
|=lfp�, where P is an acceptable program,1 AP = {A ← � |

A ∈ undef(P)} is the set of abducibles and IC is a finite
set of integrity constraints, i.e., expressions of the form ⊥ ←

body . Let O be a finite set of literals called observations. O is
explained by E ⊆ AP iff P �|=lfp O, P ∪ E |=lfp O and P ∪ E

satisfies IC. We assume that explanations are minimal, i.e.,
there is no other explanation E � ⊂ E for O.

F follows skeptically from P , IC and O iff O can be ex-
plained given P and IC, and for all explanations E for O we
find P ∪ E |=lfp F . F follows credulously from P , IC and O

iff there exists an explanation E for O and P ∪ E |=lfp F . We
focus on skeptical abduction, we are not interested in comput-
ing skeptical abductive explanations (i.e. explanations which
are present in every model of P ∪ O) but instead we want
to know the logical consequences of all explanations for O.
This is a keypoint and the main contribution of this paper.
The reason why we need to restrict ourselves to minimal ex-
planations can be clarified by the following example: Given

1This restricion can be lifted allowing P to be any logic program
using the ideas in [16; 20], where AF is transformed into an equiva-
lent AF* wrt generalized stable model semantics. The resulting AF*
is definite and can be handled by our approach.



Data: �P,AP , IC, |=lfp� and O

Result: Set of minimal explanations ME for O
ME = ∅

for i = 1 . . . n do
1) if forall E ∈ ME E �⊂ Ci and Ci ∈ Ord(AP) then

2) if P ∪ Ci |=lfp O and P ∪ Ci satisfies IC then
add Ci to ME

else
discard Ci

end
else

discard Ci

end
end

Algorithm 1: The computation of all minimal explanations.

P = {p ← q, s ← t} where AP is {q ← �, t ← �}

and O = {p}, the only explanation is E = {q ← �}. Ad-
ditionally to p and q, we conclude that ¬s and ¬t follow
skeptically. Without the restriction to minimal explanations,
E = {q ← �, t ← �} would yet be another explanation for
O, and consequently only p and q follow skeptically.

3 Computing Skeptical Abduction
In this section we explain how skeptical abduction can be
computed. For this purpose, we first need to determine the set
of minimal explanations for P , IC and O. After that, we can
identify which literals follow skeptically from O and P , i.e.,
which literals follow from all minimal explanations for O.

3.1 Algorithm 1
We define an order on the candidate explanations C, i.e.,
all subsets of AP which are possibly minimal explanations
for O. Let Pow(AP) be the power set of AP and ≺ be any
total ordering over Pow(AP) s.t. for every C, C� ∈ Pow(AP)
we have that |C| < |C�| implies C ≺ C�. Ord(AP) =
{C1, C2, . . . , Cn} is an ordered set with exactly the elements
of Pow(AP) s.t. C1 ≺ C2 ≺ · · · ≺ Cn. All minimal explana-
tions are determined by Algorithm 1.
Lemma 1. Consider �P,AP , IC, |=lfp� and observation O.
The following holds for Ci ∈ Ord(AP), 1 ≤ i ≤ n: When-
ever Ci is tested as part of condition 1) of Algorithm 1, ME
contains all minimal explanations C� for O with |C�| < |Ci|.
Proof. If there exists a minimal explanation E ⊂ Ci then E

was tested before Ci, because all E have been tested in order
of minimality. As E is a minimal explanation, it must have
been added to ME , therefore there cannot exist a minimal
explanation smaller than Ci that is not in ME .

Proposition 1. Consider �P,AP , IC, |=lfp� and observa-
tion O. Let ME be the set computed by Algorithm 1.

1. ME contains only minimal explanations for O.
2. All minimal explanations for O are contained in ME .

Proof. 1. Every E ∈ ME satisfies conditions 1) and 2) of
Algorithm 1. By Lemma 1 and condition 1) there is no
C ∈ Ord(AP) with C ⊂ E s.t. C is a minimal explanation

Data: �P,AP , IC, |=lfp�, O and ME
2

Result: Sets S+,S−

j = 0
S+ = S− = ∅

for each E ∈ ME do
increment j by 1
F

+
j = {A | P ∪ E |=lfp A }

F
−
j = {¬A | P ∪ E |=lfp ¬A }

end
if j ≥ 1 then

S+ = ∩
j
k=1F

+
k

S− = ∩
j
k=1F

−
k

end
Algorithm 2: The computation of skeptical consequences.

for O. By condition 2), as E explains O, all E ∈ ME are
minimal explanations for O.
2. (by contradiction) Assume that all possible explanations
have been tested and E �∈ ME is a minimal explanation. Then
there exists no explanation E � ⊂ E , i.e., E satisfies condi-
tion 1), and because E explains O, it must have been added to
ME by condition 2) of Algorithm 1. Therefore, E ∈ M.

3.2 Algorithm 2
Algorithm 2 determines which literals follow skeptically by
verifying if they are entailed by all minimal explanations.
Proposition 2. Consider �P,AP , IC, |=lfp� and observa-
tion O. Let S+,S− be computed by Algorithm 2.

1. S+ contains all skeptically entailed positive literals.
2. S− contains all skeptically entailed negative literals.

Proof. 1. If j = 0 then O can not be explained, and nothing
follows skeptically. Accordingly, the set S+ will be empty. If
at least one minimal explanation exists, we show that all ele-
ments in S+ follow skeptically. Let A ∈ S+. Then, because
S+ = ∩

j
k=1F

+
k it follows that A ∈ F

+
k with 1 ≤ k ≤ j. As

Algorithm 2 creates a set F+
k for each Ek ∈ ME , we have

that A ∈ F
+
k implies P ∪ Ek |=lfp A, for all Ek ∈ ME . By

Proposition 1, the set ME contains exactly all minimal expla-
nations for O. Consequently, A follows skeptically.
2. can be shown similarly to 1.

4 A Connectionist Realization
We encode Algorithms 1 and 2 into programs and translate
the programs into neural networks with the help of the CORE
method. The resulting networks compute ME , S+ and S−.

4.1 The CORE Method
The CORE method [8; 2] translates programs into neural net-
works. It is based on the idea that feed-forward networks can
approximate almost any function arbitrarily well, and that the
semantics of a logic program is captured by the TP operator.

We represent propositional variables by natural numbers;
let n ∈ N be the largest number occurring in P . The network
associated with P is constructed as follows:

2This set is computed by Algorithm 1.
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Figure 1: Overview of the network: Components and the con-
nections between them.

1. The input and output layer is a vector of binary threshold
units (with threshold .5) of length n, where the ith unit in
each layer represents the variable i, 1 ≤ i ≤ n. Addi-
tionally, each unit in the output layer is connected to the
corresponding unit in the input layer with weight 1.

2. For every clause of the form A ← L1 ∧ · · · ∧ Lk with
k ≥ 0 occurring in P do:
(a) Add a binary threshold unit c to the hidden layer.
(b) Connect c to the unit representing A in the output

layer with weight 1.
(c) For each L occurring in L1 ∧ · · · ∧ Lk connect the

unit representing L in the input layer to c. If L is an
atom, then set the weight to 1, otherwise to −1.

(d) Set threshold θc of c to l− 0.5, where l is the number
of positive literals occurring in L1 ∧ · · · ∧ Lk.

Lemma 2 ([8]). For each program P there exists a 3-layer
recurrent network that computes TP .
Lemma 3 ([9]). For each acceptable program P there ex-
ists a 3-layer recurrent network such that each computation
starting with an arbitrary initial input converges and yields
the unique fixed point of TP .

4.2 The Network
[3] provides a connectionist model to compute credulous
abduction. We modify their approach such that we only
consider minimal explanations, which allows us to compute
skeptical solutions. Figure 1 gives an overview of the net-
work. Each component is expressed as a logic program and
translated into a neural network using the CORE method.
AF is the abductive framework in consideration where we test
all minimal explanations. A counter C generates all candi-
dates in order of minimality. M tests only the minimal candi-
dates and records which of them are the (minimal) explana-
tions. Solution S keeps track of all literals that follow from
each minimal explanation and generates the sets S+ and S−.
Ultimately, these are the sets we are interested in. Whenever
a valid solution has been found, control logic L informs S
and M. Additionally, L requests C to output the next set of
abducibles. Finally the clock K snychronizes the system. It
instructs L when to evaluate the current solution.

The Abductive Framework AF
In order to detect which E ⊆ AP explains O and satisfies
IC, we construct P � = P ∪ O� ∪ IC� where, given that

AnA3 . . .A2A1

AnA3 . . .A2A1

Figure 2: The network for AF, where {A1, . . . , An} =
atoms(P ∪O� ∪ IC�).

O = {L1, . . . , Ln}, O� = {obs ← L1 ∧ · · · ∧ Ln} and
IC� = {ic ← body | ⊥ ← body ∈ IC}. Lemma 4 follows
immediately from the definitions.
Lemma 4. Given �P,AP , IC, |=lfp� and let O be a finite set
of literals. If E ⊆ AP explains O given P and IC then
P � ∪ E |=lfp obs and P � ∪ E |=lfp ¬ic.

We can construct the associated network NAF using the
CORE method as shown in Figure 2. From this construction
and Lemma 3 follows:
Lemma 5. Given NAF and let E ∈ ME be a minimal ex-
planation for O given P and IC. If NAF reaches a stable
state, then for each neuron i in the output layer of NAF we
find: If i is active, then P � ∪ E |=lfp i. If i is inactive, then
P � ∪ E |=lfp ¬i.

The Counter C
C outputs all possible combinations of abducibles in the order
of minimality. It is divided into the two components C1 and
C2. C1 computes all the combinations of k elements out of
n and C2 increases k. This way we first compute all the sets
C ∈ Pow(AP) with |C| = 1. Thereafter, we compute all sets
with |C| = 2, |C| = 3,...,|C| = n, where n = |AP |.

C1 starts with a number k of active bits, and is based on
two simple rules over a binary vector of length n. Each time
the signal δ is activated:
1. The left-most bit b is shifted to the left.
2. When a bit b can not be shifted anymore the last active bit

a < b is shifted to the left, all active bits c > a are reset
relative to a, and the process restarts from 1.

Eventually all k active bits will be shifted to the left, and C1

asks C2 to update the initial configuration of k+1 active bits,
and starts again. The process ends when C1 runs with the ini-
tial configuration of size k = n.
In condition 2. we reset the position of the bits. We need to
know which of them were initially active. In order to keep
track of the initial k bits, each one is represented by the sym-
bol aij where i indicates its original and j its current position.

C1 =
n�

i,j=1






(1) ai(j+1) ← aij , si, δ
(2) mi−1 ← ain, si, δ
(3) mi−1 ← aij , a(i+1)(j+1),mi

(4) ri ← aij ,¬a(i+1)(j+1),mi

(5) ai(j+1) ← aij ,¬a(i+1)(j+1),mi

(6) ak(j+k−i) ← ri, aij , bk (for k>i)
(7) aij ← aij ,¬ai(j+1),¬rk,¬v

(for k>i)
(8) v ← m0








C2 =
n�

i,j=1






(9) b1 ←

(10) bi ← bi
(11) bi+1 ← bi, v
(12) done ← bn, v
(13) ψ ← ¬ψ,next
(14) δ ← ψ,next
(15) aii ← ¬ψ, bi,next
(16) ψ ← ψ,¬v
(17) si+1 ← si, v
(18) si ← si,¬si+1

(19) s1 ← ¬b2,¬ψ,next
(20) aj ← aij






Due to space restrictions, we only detail the most relevant
features of the counter. For each component C1 and C2 a
correspondent signal δ and ψ is used, δ is used by C1 to shift
the bits to the left, and ψ is used by C2 to update the initial
configuration. They both depend on the next signal. The
output of the counter is represented by each neuron aj .

Proposition 3. Consider AP and the counter C. The output
of C represented by all active atoms aj generates Ord(AP).

The Clock K
K synchronizes the system. Each cycle of the clock activates
the sync signal, which checks if the current solution is valid
(sol ) and activates the next signal. This causes C to output
the next combination of abducibles. The clock has D + 1
atoms ki. The value of D = 1

2 (P + N + 5) is chosen to
give the rest of the network enough time to stabilize, where
P is the longest directed path without repeated atoms in the
dependency graph of P , and N = |AP |.

In K each atom ki depends on its predecessor and the ad-
ditional ¬non_min condition is used to reset the clock if a
non-minimal solution is discarded by component M . The
combination k0,¬k1 is reached once per cycle and is used to
activate the neuron sync, which remains active for two con-
secutive time steps.

K =
D�

i=1

{ki ← ki−1,¬non_min}∪

�
k0 ← ¬done,¬kn
sync ← k0,¬k1

�

This process continues until neuron done is activated (set by
(12) on C2) and prevents k0 to change its value.

The Control L
L verifies whether ic is violated (1) or obs is not met (2).

L =






(1) nogood ← ic
(2) nogood ← ¬obs
(3) sol ← sync,¬nogood
(4) done ← done

(5) next ← sync






If this is the case, the current solution is not valid (nogood ).
Both conditions are checked when sync is activated by K. If
the conditions are met, an explanation has been found, and
sol is activated by (3). (4) serves as a memory for neu-
ron done which indicates thal all explanations have been ex-
plored. (5) induces C to output the next possible explanation
by activating next , which depends on sync.

Lemma 6. Neuron sol is active only when an explanation E

for O given P and IC has been found. It is active for only
two time steps.

Proof. From Lemma 4, if E explains O, then neuron obs will
be active, and neuron ic inactive, thus nogood can not be ac-
tivated. Under this conditions when sync is activated by K to
check if the current solution is valid, sol will be activated.

The Minimal Candidates M
M has the tasks to filter C’s output s.t. only minimal candi-
dates are tested and to record each minimal explanation that
has been found. Given a candidate C, a minimal explanation
E and the set AP , we construct the set QEC = {q1, . . . , qn}
in order to determine E ⊂ C, where qi = ⊥ iff ai ∈ E and
ai �∈ C, and qi = � otherwise.
Intuitively, in case all elements of E are also in C, all qi ∈

QEC will be � indicating that C is a superset of E and thus C
can not be minimal (non_min). The process is encoded by
adding the following clauses to M, where we label ai ∈ E as
aEi in order to distinguish the elements of E from those of C.
For each E ∈ ME add to M:
�
(1) qi ← ¬aEi
(2) qi ← ai, aEi

�
∪

�
(3) non_min ← q1, . . . , qn
(4) next ← non_min

�

Lemma 7. Given �P,AP , IC, |=lfp� and let E be a minimal
explanation for O given P and IC. For any candidate C

where E ⊂ C, it holds that qi = � for all qi ∈ QEC .

Proof. Assume E ⊂ C but qi = ⊥ for some i. Then clauses
(1) and (2) in M are not satisfied, only if for the corresponding
ai we find both: ai ∈ E and ai �∈ C. But, since ai ∈ E and
E ⊂ C it follows that ai ∈ C , thus qi must be true.

Lemma 8. Let C be the current candidate represented by
each neuron ai from the output of the counter C. Given M, the
non_min neuron will be active iff C ⊃ E for some E ∈ ME .

Proof. Follows from Lemma 7 and Proposition 1.

Since non_min detects if E ⊂ C for some E ∈ M, clause
(4) activates the next neuron discarding C and instructing C
to generate the next candidate, thus only minimal explana-
tions will be tested.

To construct the set M we need to record each minimal
explanation found. We provide an upper bound for the num-
ber of minimal explanations that can exist. The proof of the
following lemma is quite extensive and can be found in [19].
Lemma 9. Given a set of abducibles AP , let n = |AP |.
Then the maximal number of possible minimal explanations
is given by max = (n!)

n
2 !n2 ! , which is the maximum number of

subsets of the same size (n2 ) out of n elements.
The following rules are added to M to keep track of how

many explanations E have been found.





E1 ← sol ,¬E1
E2 ← sol ,¬E2, E1
E3 ← sol ,¬E3, E2
. . .
Emax ← sol ,¬Emax, Emax−1





∪ { Ei ← Ei }



When the ith solution has been found, the correspondent Ei
neuron will be active. Because sol is active for only two time
steps, it ensures that only one of the rules above will be fired
by each activation of sol , and only one minimal explanation
will be recorded at each time.
As soon as an Ei has been found, its elements are recorded.
For this purpose we introduce the symbol aEj

i which states
that atom ai belongs to Ej . Then, for each ai ∈ A and each
Ej with 1 ≤ j ≤ max, we add the following rules to M :
�
(1) a

Ej

i ← ai, Ej ,¬block_Ej
(2) a

Ej

i ← a
Ej

i

�
∪ {(3) block_Ei ← Ei }

(1) is fired as soon as Ej is activated, and records its ele-
ments aEj

i . The additional condition ¬block_Ej ensures that
we record the values only when the Ej solution was found.
(2) serves as a memory for each a

Ej

i ∈ Ej . (3) blocks the cur-
rent explanation; thus, only values present at the moment Ej
was detected are recorded.
Lemma 10. Consider �P,AP , IC, |=lfp�, observation O and
the components AF, C, K, L and M. At the moment sol
neuron is active, a minimal explanation E for O is found.
Then for each active neuron A in the output layer of AF it
holds: P ∪ E |=lfp A and, for each inactive neuron A in the
output layer of AF it holds P ∪ E |=lfp ¬A.

Proof. From Lemma 3 we know that NAF computes T lfp
P .

From Lemmas 6 and 10 we conclude that each explanation
detected by the signal sol is minimal.

The Solution S
Component S allows us to obtain the set S+ by computing
the intersection of each set F+

j = {A | P ∪ Ej |=lfp A}. In-
stead of first obtaining all sets F

+
j and then computing S+,

the following logic program progressively constructs S+ by
intersecting the current set F+

j with the last computed value
of S+. Thus, we compute S

+
j = F

+
j ∩ S

+
j−1. This avoids in-

troducing a memory to remember each set F+
j and when all k

minimal explanations are found the set S+
k will correspond to

the set S+. For the case j = 1, we define S
+
1 = F

+
1 . A

similar construction yields S−
k which corresponds to S−.

Lemma 11. If all minimal explanations have been found, the
sets S+

k and S
−
k correspond to the sets S+ and S−, resp.

Proof. For j = 1 is trivial. In case j > 1, S+
j = F

+
j ∩ S+

j−1

and since S+
j−1 = ∩

j−1
1 F

+
i it follows that S+

j = F
+
j ∩F

+
j−1∩

F
+
j−2 ∩ · · · ∩ F

+
1 , thus when the final solution k is found,

S
+
k = S+. The proof is similar for S−.

In order to compute S+, we first need to construct F+
1 .

This is achieved by introducing a copy A+
i for each Ai ∈ R

such that A+
i = � iff P ∪ E1 |=lfp Ai, with E1 ∈ ME . For

each Ai ∈ R we add the following clauses to S:
�

(1) A+
i ← Ai, sol

(2) A+
i ← A+

i

�

AiA+
isolA∗

iA−
i

A+
iA∗

iA−
i

Figure 3: Network for S

Consider (1): By Lemma 6 and 10, sol is active only when
a minimal explanation E for O is found and for each active
neuron Ai in the output layer of AF, P ∪ E |=lfp Ai. (1) en-
sures that A+

i is active iff P ∪ E |=lfp Ai, and in particular
A+

i = � iff P ∪E1 |=lfp Ai. Additionally, by (2), we remem-
ber that A+

i ∈ F
+
j for some j, thus we introduce a recurrent

connection for A+
i .

Besides remembering when an atom was present in a solu-
tion E we need to detect if this atom does not occur in all other
solutions. Atoms which follow credulously but not skepti-
cally are labelled by A∗. Let Ai be the atom corresponding to
an active neuron A+

i . Ai �∈ S+ if Ai �∈ F
+
j for some j. This

is detected by (3) and the atom A∗
i is activated:

�
(3) A∗

i ← A+
i ,¬Ai, sol

(4) A∗
i ← A∗

i

�

If for the current explanation Ej it holds P ∪ Ej |=lfp ¬ Ai

and, P ∪ Ek |=lfp Ai for any k < j then Ai �∈ S+ and, by (3),
the atom Ai is labeled A∗

i . Finally, regardless of any further
result, by (4), an atom A∗

i is always left out of S+. Thus, we
add a recursive connection to remember its state.
Finally, S detects only the positive literals that skeptically fol-
low from P and O. To obtain the corresponding negative lit-
erals we extend S by the following clauses:






(5) A−
i ← ¬Ai, sol

(6) A−
i ← A−

i
(7) A∗

i ← A−
i , Ai, sol






The corresponding network is shown in Figure 3.
Claim 1. Consider �P,AP , IC, |=lfp�, observation O and the
components AF,C,K, LM and S. If neuron sol is active, then
S
+
j = {Ai | A

+
i = �} \ {Ai | A∗

i = �} and S
−
j = {¬Ai |

A−
i = �} \ {Ai | A∗

i = �}.

The resulting network
Using the CORE method we translate P into a neural network
NAF and we add recurrent connections from its output to its
input layer. The resulting network computes T lfp

P , given that
P is a acceptable.

The networks NC, NL, NK, NM, NS corresponding to the
components C, L, K, M, S, resp., are obtained by translat-
ing the theory representing each component using the CORE
method. Each resulting sub-network has the property that
it computes the associated TP operator, thus the semantics
detailed above are preserved. In the following, let N =
�NAF,NC,NL,NK,NM,NS�.



Claim 2. Let R+ = {Ai | A
+
i = �}, R− = {Ai | A

−
i =

�}, and Rbad = {Ai | A∗
i = �}. If N reaches a stable state,

then for all minimal explanations E ∈ ME and for each atom
Ai ∈ (R+ \ Rbad) we find P ∪ E |=lfp Ai; likewise, for each
atom Ai ∈ (R− \ Rbad) we find P ∪ E |=lfp ¬Ai.
Claim 3. If N reaches a stable state, then S+ = R+ \ Rbad

and S− = {¬A | A ∈ R− \ Rbad}.

Remarks
Positive cycles in the framework AF can be problematic as
they may introduce a memory in the network. To handle them
properly the AF component has to be relaxed at each next

signal. This can be done by connecting the neuron next to
each neuron representing a rule in P in the input layer of AF,
and erase possible memories introduced by such cycles.

5 Conclusion
We have developed a connectionist network for skeptical
reasoning based on the CORE method and the ideas pub-
lished in [3] for credulous reasoning. The CORE method
has already been extended to many-valued logics in [15;
21], but the skeptical reasoning part has not been considered
yet. We intend to extend our skeptical reasoning approach to
three-valued Łukasiewicz logic to realize our ultimate goal as
outlined in the introduction, viz. to develop a connectionist
model for human reasoning tasks.
Although the AF always reaches a stable state, other compo-
nents are represented by programs which are not acceptable.
We need to provide the missing proofs for Claims 1, 2 and 3
which can be built showing that the network N terminates,
i.e., that it reaches a least fixed point.
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Abstract
The paper summarizes presumptions of intelligence
from the point of view of the artificial general in-
telligence and with focus on the hybrid paradigm.
Particularly, the paper concerns with possible ways
in which Universal Intelligence definition and the
derived Algorithmic Intelligence Quotient test can
be used to evaluate a hybrid system, the hybrid
paradigm and the paradigms of artificial intelli-
gence. A preliminary search suggests that Algorith-
mic Intelligence Quotient test can be used for prac-
tical evaluation of systems on condition that their
interfacing is technically solved, while the Univer-
sal Intelligence definition can be used for formal
analysis in case a suitable formal description of the
system or paradigm is devised. The long-standing
issue of evaluating general artificial intelligence al-
beit crucial has been neglected. However, it can
help focusing research efforts, as well as answering
some questions regarding the intelligence itself.

1 Introduction
Recently, the original question of artificial intelligence (AI):
”What is intelligence?” has again been brought into focus,
cf. [Turing, 1950; Legg and Hutter, 2007]. It seems, that
the question is, indeed, crucial for reaching the original goal
of AI by some dubbed as strong AI or in more current
terms artificial general intelligence (AGI), cf. [Searle, 1980;
Goertzel, 2014]. As pointed out by Vadinský [2013] and de-
tailed later in [2014], it is a multidisciplinary endeavor reach-
ing to various areas of philosophy and other cognitive sci-
ences, not only a limited AI problem. This is also supported
by ongoing research of cognitive architectures, see e.g. [Sun,
2007]. An outline of these issues will be given in Section 2.

Throughout the history of AI, several paradigms emerged:
symbolism, connectionism, hybrid approach and situated
cognition, suppling the field with various approaches to reach
the goal, see e.g. [Sun, 2001; Walter, 2010]. Of these
paradigms the paper concerns mainly the hybrid approach
since it synergically combines both symbolism and connec-
tionism. Certain aspects of situated cognition are also dis-
cussed. A brief summary of the paradigms of AI will be given
in Section 3.

Taking into account various ways in which intelligence
was delimited, especially Legg and Hutter’s [2007] Univer-
sal Intelligence definition, an evaluation of AI and its meth-
ods seems feasible. In Section 4, several possibilities of this
evaluation will be outlined. These ideas will focus on AGI-
point-of-view analysis of a hybrid system in particular (4.1),
the hybrid approach (4.2), and the paradigms of AI in general
(4.3).

2 Artificial and Natural Intelligence
To grasp intelligence, philosophical reflection will be called
to help (2.1). An outline of the knowledge of cognitive sci-
ence as well as some examples of ongoing research of cog-
nitive architectures will be given to illustrate the need for
general-oriented multi-disciplinary approach (2.2). Further,
the strong – weak and general – specific AI distinctions will
be summarized (2.3). Finally, attempts on defining AI will be
described (2.4).

2.1 Philosophical Presumptions of Intelligence
So far the only true intelligence known to us is human intel-
ligence. Therefore, any effort to build AI should somehow
relate to human intelligence, although this does not neces-
sarily call for its duplication. Of course, research on animal
behavior and of AI itself, can also contribute. This way pre-
sumptions of intelligence, that is properties essentially tied
with intelligence, can be identified to be later used as a guid-
ance to build an AI.

Philosophical reflections of what is intelligence and
thought can be traced back at least to Descartes [1637], who
notices universality of thought and its connection to lan-
guage and rational speech. Similarity to the well-known
Turing test [1950], which was at the beginning of AI as a
field of study, can be easily seen. Expanded tests of intelli-
gence were later proposed e.g. by Harnad [1991], who fo-
cuses on full repertoire of human intelligent behavior, and
Schweizer [2012], who accentuates the ability of a species
to evolve its intelligent behavior. Searle [1980] in his Chi-
nese Room Argument notices the connection of intelligence
with meaning, understanding and intentionality. However,
presumptions of intelligence can be understood even more
widely, e.g. to the level of consciousness, as discussed
in [Dennett, 1993].



2.2 Cognitive Presumptions of Intelligence
As de Mey [1992] points out, information processing requires
a system to have a world representation in some kind of
model. However, de Mey also stresses the ways in which
the model interacts with the world through perception and
action. A stratified model of perception shows, how the ex-
pectations of a system based on its world model contribute to
its perception of some object and how this propagates back
to the model. The way in which the model is updated fol-
lows according to de Mey two steps: 1) implicit knowledge is
formed, 2) further interaction with the object makes the im-
plicit knowledge explicit.

To explain cognition, Sun [2007] proposes to use an inte-
grated hierarchical approach. Various sciences encounter the
cognition on different levels of abstraction: social, psycho-
logical, componential and physiological. This creates sets of
constrains both from the upper levels, as well as from the
lower levels of abstraction. Using this approach, cognitive
architectures – that is domain-generic computational models
capturing essential structures and processes of the mind – can
be build. Those are useful both for understanding the cogni-
tion as well as for building AI systems. Examples of cogni-
tive architectures include: modular neural-symbolic architec-
ture CLARION [Sun, 2007], modular declarative-procedural
architecture ACT-R [Anderson et al., 2004], or recursive al-
gorithmic interpolating model Ouroboros [Thomsen, 2013].

2.3 Strong, Weak, Specific and General AI
The ultimate goal of AI can be understood differently. To il-
lustrate it, a strong – weak distinction made by Searle [1980]
can be adopted. Originally, Searle based his distinction on
whether AI is the explanation of mind (Strong AI), or only
a tool for modeling and simulating mind (Weak AI). He
also identifies the strong AI with traditional symbolic ap-
proach. However, the distinction can be interpreted more
freely: Strong AI would be such an AI system, that it would
be comparably powerful to human intelligence, bearing in
mind its universality. On the other hand, Weak AI would not
be universal, it would only provide humans with useful tools
to solve certain problems.

This interpretation of Searle’s strong – weak AI distinction
is similar to more recent general – specific AI distinction, as
given e.g. in [Goertzel, 2014]. Specific AI offers programs
capable of solving a specific task, or perhaps a limited set of
tasks, no matter how the task itself is sophisticated. General
AI strives for programs capable of general problem solving,
or general intelligent action. Such an AI would be able to
solve a broad set of tasks, ranging from simple to complex.

2.4 Defining Artificial and Natural Intelligence
When dealing with AI, a question: ”What is intelligence?”
naturally comes to mind. The question was already noted by
Turing [1950], however, he sidestepped it. Only recently, the
question came back into research focus. The issue can be ap-
proached from different angles: 1) focusing more on the test-
ing aspect is so called psychometric AI (PAI) of [Bringsjord
and Schimanski, 2003], 2) stressing the need for a definition
is the work of [Legg and Hutter, 2007].

The field of psychology called psychometrics deals with a
systematical measurement of psychological properties (espe-
cially intelligence) in humans using various tests. According
to [Bringsjord and Schimanski, 2003] it gives an answer to
the question, what is intelligence, therefore AI should be un-
derstood as PAI and should focus on ”building information-
processing entities capable of at least solid performance on all
established, validated tests of intelligence and mental ability.”
This results in an iterative approach of integrating the ability
of solving yet another test into the entity in question – which
is useful from the engineering perspective.

However as a testing approach, PAI is somewhat imprac-
tical, since it deals with all established and validated tests
which is an open set. PAI also does not explicitly concern
the issue of defining intelligence and leaves it to psychology.
That may be considered a benefit by some, however ques-
tions can be raised, whether psychological definitions of hu-
man intelligence implicitly present in the tests can be directly
applied to an artificial system. A more general approach sup-
ported by multidisciplinary interaction may be needed. The
limitations of PAI are also considered by [Besold et al., 2015]
stating several arguments questioning the necessity and suf-
ficiency conditions of directly using human intelligence tests
to measure machine intelligence. This also calls for general-
ization and improvement of tests used by PAI.

As argued by [Legg and Hutter, 2007], to achieve the ulti-
mate goal of AI, intelligence has to be precisely and formally
defined. Ideally, the definition should allow for some sort of
comparison or measurement to serve as a guide for reach-
ing the goal. To create such a definition, Legg and Hutter
studied a broad variety of definitions, theories, and tests of
human, animal, and artificial intelligence. Noting their com-
mon essential features, Legg and Hutter derived a following
informal definition: ”Intelligence measures an agent’s ability
to achieve goals in a wide range of environments.” The for-
malization of the definition dubbed as Universal Intelligence
is shown by Figure 1.

Υ(π) :=
�

µ∈E

2−K(µ)V π
µ

Figure 1: Universal Intelligence Υ of agent π is given by
agent’s ability to achieve goals as described by a value func-
tion V π

µ as an expected sum of all future rewards over a set of
environments µ weighted by Kolmogorov complexity func-
tion K. For more detailed explanation see [Legg and Hutter,
2007].

Looking at the formal definition by [Legg and Hutter,
2007] at Figure 1, following important building blocks can
be noted:

• The definition considers environment µ, agent π and
their iterated interaction through actions ai of the agent,
its perceptions (observations) oi and rewards ri originat-
ing in the environment. The environment is described as
a computable probability measure µ of perceptions and
rewards given current interaction history.

• With all computable environments considered and many



agent’s hypotheses of the current environment in the cur-
rent iteration existing, Kolmogorov complexity K(µ) is
used as a measure in place for Occam’s razor 2−K(µ). If
a short program can be used to describe the probability
measure of an environment (ie. as a hypothesis about
the environment), than the environment has a low com-
plexity, since Kolmogorov complexity is based on the
length of the shortest program describing a sequence of
bits. Therefore, complex environments (hypotheses) are
less influential on the agent’s overall performance, than
the simple ones. However, even complex environments
(hypotheses) are considered if consistent with history of
interactions.

• Agent’s ability to achieve goals is described by a value
function: V π

µ := E (
�∞

i=1 ri) ≤ 1 basically as maximiz-
ing the expected future rewards ri given past interaction
with the environment. Temporal preference is present in
the way, how rewards are distributed by the environment.
That is, the task or environment itself decides whether a
slow-learning but more accurate or fast-learning but in-
accurate solution is better.

The definition proposed by Legg and Hutter [2007] enables
ordering of performance of various agents, ranging from ran-
domly behaving to theoretically optimally intelligent agent
AIXI. As environments are weighted by their complexity
and all Turing-computable environments are considered, to
achieve a high level of Universal Intelligence, a true gener-
ality of the agent is required. As the definition draws from
fundamental concepts of computation, information, and com-
plexity, it is not culturally biased or anthropocentric. The
definition is by itself not a test, however it has a potential
to found a basis for some approximative test of intelligence.

The potential was examined by [Legg and Veness, 2013]
proposing an approximation of Universal Intelligence mea-
sure called Algorithmic Intelligence Quotient (AIQ) as shown
in Figure 2. Legg and Veness took many steps to transform
the original definition into a practically feasible test resulting
in an open source prototype implementation.

Υ̂(π) :=
1

N

N�

i=1

V̂ π
pi

Figure 2: AIQ estimate of Universal Intelligence Υ̂ of agent
π is given by agent’s ability to achieve goals as described by
an empirical value function V̂ π

pi
as total reward returned from

a single trial of an environment program pi averaged over N
randomly sampled environment programs. For more detailed
explanation see [Legg and Veness, 2013].

Looking at the formula of AIQ test by [Legg and Veness,
2013] at Figure 2, following differences from the Universal
Intelligence definition can be noted:

• The test considers a finite sample of N environment pro-
grams pi, agent π and their interaction. Same environ-
ment can be described by several programs and same
program can be included in the sample many times.

• With only N environment programs considered, simple
average is taken. However, the notion of Occam’s ra-
zor is kept in the way environment programs are sam-
pled since Solomonoff’s Universal Distribution is used:
MU (x) :=

�
p:U(p)=x∗ 2

−l(p). Therefore, a shorter pro-
gram has a higher probability of being used, but all pro-
grams are considered, not only the shortest as is the case
with Kolmogorov complexity.

• Empirical value function V̂ π
pi

is used since only a limited
number of iterations is tried. Also, the rewards given
by the environment program are no longer bound by 1
as is the case with the definition, nor are in any way
discounted to specify the temporal preference on this
level. That is, total reward returned from a single trial
of agent – environment interaction is used.

The AIQ test proposed by [Legg and Veness, 2013] enables
testing of agents supplied internally by the prototype imple-
mentation or externally via a custom wrapper as is the case
with the AIXI approximation. The test is configurable namely
by setting size of the environment programs sample, number
of iterations for agent – environment interaction, sizes of ob-
servation and action space, or computation limit per iteration.
The test uses a simple reference Turing machine (a modified
BF reference machine). On the choice of reference machine,
however, the results are dependent.

3 Paradigms of Artificial Intelligence
As the AI field evolved, several paradigms appeared. Sym-
bolism (3.1) draws its inspiration from logic and abstract
thought, while connectionism (3.2) is inspired by biologi-
cal neural networks. Realizing their complementarity, hybrid
paradigm (3.3) tries to reach a synergic combination. Situ-
ated cognition (3.4) is inspired by phenomenology and biol-
ogy and accents interaction of an intelligent system with its
environment.

3.1 Symbolic Paradigm
Drawing its inspiration from the very beginnings of com-
puter science, symbolic paradigm is tightly connected to the
idea of universal computation of Turing machine and ensuing
computational theory of mind and functionalism, cf. [Tur-
ing, 1936; Dennett, 1993]. Coined as Physical Symbol
System by [Newell and Simon, 1976], the paradigm deals
with an explicit representation of knowledge in the form of
symbols structured into physical patterns by an external ob-
server. However, the way in which symbols gain their mean-
ing, known as the Grounding Problem, is crucial [Harnad,
1990]. Several solutions have been proposed, which either
deal with more symbols of different kinds, as e.g. Rapa-
port’s [1995] Syntactic Semantics, and recent semantic ap-
proaches such as semantic web [Gray, 2014], or robotic in-
teraction with the world, as Harand’s original solution, or
even result in adopting another paradigm. Nevertheless, sym-
bolic paradigm brings good results when algorithm is known,
knowledge are explicitly represented and the data processing
is mostly sequential.



3.2 Connectionist Paradigm
Inspired by massive parallelism of human brain, connection-
ism is based on relatively simple computational units con-
nected to a complex network in which higher ability emerges
in accordance with emergentist theory of mind, cf [Church-
land and Churchland, 1990; Sun, 2001]. Starting with Mc-
Culloch and Pitts’[1943] artificial neuron complemented by
Hebb’s [1949] unsupervised learning, the paradigm evolved
more complex models such as Rosenblatt’s [1958] perceptron
with supervised back-propagation learning of [McClelland et

al., 1986]. Connectionist paradigm is suitable for tasks where
knowledge is implicit and learning is needed providing paral-
lel and robust solution.

3.3 Hybrid Paradigm
Realizing the complementarity of both symbolic as well as
connectionist paradigm, it seems only natural to try a hybrid
approach. Inspired by dual-process approaches to theory of
mind, hybrid paradigm seeks synergy in dual representation
of knowledge, e.g. [Sun et al., 2005]. The architecture of
hybrid systems is an important consideration: usually it is
some version of a heterogeneous modular system, however
several variants of tight or loose coupling of connectionist and
symbolic modules exist [Sun, 2001]. There are two ways in
which learning of a hybrid system is realized: a bottom – up
approach is basically emergence of explicit knowledge from
implicit layer, while a top – down approach concerns a grad-
ual descend of explicit knowledge in an assimilative way into
the implicit layer [Sun, 2007].

3.4 Situated Cognition
Rooted in French phenomenology of Merleau-Ponty [1942;
1945] and inspired by Maturana and Varela’s [1979] autopoi-
etic approach to biology, the paradigm of situated cognition
stresses the role of physical body and interaction through per-
ception and action with the environment creating a species-
specific Umwelt. Manifested mainly in Brooks’ [1991] re-
active approach to robotics, the situated cognition suppresses
the role of representation to a varying degree. An explana-
tion of different schools in situated cognition, i.e. embodied,
embedded, extended, and enacted cognition is given e.g. by
Walter [2010].

4 AGI Evaluation and Hybrid Paradigm
Having outlined presumptions of intelligence, a formal defi-
nition, and a related practical test of AI, several research pos-
sibilities concerning evaluation of AI paradigms and systems
arise. The paper will mainly discuss ways of evaluating a
chosen hybrid system (4.1), and a hybrid paradigm in gen-
eral (4.2). Alternatives of evaluating AI paradigms will be
also mentioned (4.3), since a hypothesis is held, that hybrid
approach is more suitable for reaching AGI.

4.1 Possibilities of Evaluating Presumptions of
Intelligence of a Hybrid System

First, a suitable hybrid system should be chosen. Then, there
seem to be two ways of evaluating presumptions of intelli-
gence of a hybrid system: A system could be tested using

the AIQ test. A system could be formally analyzed using the
Universal Intelligence definition. Let us now consider what
such possibilities require and what results can be achieved.

1. A choice of a suitable hybrid system:
• A broad search of existing hybrid systems should

be conveyed and some criteria defined.
• Obviously, to test a system using the AIQ test, the

system should be implemented.
• For a formal analysis using the Universal Intelli-

gence definition it should suffice that the system is
formally defined.

2. AIQ test of the chosen hybrid system:
• Technical issues can be expected when connecting

the system with the test. Here, an open source sys-
tem would be beneficial, as modifications necessary
for the test could be realized. As for closed source
systems, it may be feasible to develop some kind of
a wrapper, if an interface is well defined. The test
itself is open source, therefore some modifications
needed by a system can be feasible.

• Obviously, the results will enable a comparison of
the evaluated system with other tested systems. So
far however, only simple agents and AIXI approxi-
mations were tested to the best of my knowledge.

• The results will allow for incremental testing of im-
proved versions of the system, however it is un-
clear, if they can shed some light on what to im-
prove specifically.

3. Formal analysis of the chosen hybrid system:
• As the definition focuses on the interaction of the

agent with environments, a formalization of the
system focused on the interaction is needed. It is
an open question, if there are hybrid systems for-
mally described in such a way.

• If there are systems formalized structurally, a feasi-
bility of a transformation to the needed form is the
issue. As the definition is constructed so that it is
applicable on the widest possible range of agents,
it tries not to constrain agent’s structure, however,
some structures may be better than others in the
terms of resulting behavior, so perhaps this is also
worth of consideration.

• The analysis can be also done less rigorously. Con-
sidering what sorts of tasks (environments) can the
system succeed in and how complex the tasks are,
can yield some insight of its Universal Intelligence.
This can be further specified if some estimates can
be made regarding the agent’s ability of keeping
history of its interactions with the environment and
making predictions for the future.

• The results will, obviously, allow for ordering the
systems according to their Universal Intelligence
and should help comparing different design im-
provements. However, this will strongly depend on
the precision and suitability of formalization of the
analyzed system, as discussed above.



4.2 Possibilities of Evaluating Presumptions of
Intelligence of Hybrid Paradigm

The evaluation of presumptions of intelligence can be brought
to a more general level – the hybrid paradigm itself. Here, an
inductive approach generalizing results of hybrid systems in
the AIQ test and in the formal analysis according to the Uni-
versal Intelligence definition could be practicable. Also, it
may be possible to use a deductive approach based on the
Universal Intelligence definition and a general formal de-
scription of hybrid systems. Let us now consider require-
ments and possible results of such approaches

1. Induction from AIQ test results and formal analyses:
• An obvious condition is the feasibility of a test and

an analysis of a hybrid system as discussed in pre-
vious section.

• For an inductive generalization tests of several hy-
brid systems should be performed. Here, an issue
of induction arises: Is it necessary to test all exist-
ing hybrid systems for the induction to be relevant?
Or will it be reasonably sufficient to test some sam-
ple of existing systems? Having a poor result of
a chosen hybrid system in AIQ test as a base for
generalization, would it indicate, that the hybrid ap-
proach is poor, or that the system is yet incomplete?

• Such cases would support the need to generalize
from the widest base possible, ideally somehow
taking into the account, that some existing imple-
mentations may not be implemented well. Perhaps,
taking the complexity of a system into considera-
tion similarly as it is used in the test and the defini-
tion to weight environments might help.

• Results of this approach should give some general
standing of the hybrid paradigm regarding the Uni-
versal Intelligence and AIQ. By itself it may not be
very interesting, however comparison to AIXI, or
other evaluated types of agents can be feasible and
stimulating.

2. Deduction from formal description of hybrid paradigm:
• Clearly, a formal definition or description of hybrid

paradigm is required. Is it possible to construct it
and how will it differ from a formal definition of a
specific hybrid system?

• Moreover, the description has to be in a form suit-
able for the Universal Intelligence definition, which
stresses the ability of an agent to interact with its
environment.

• Therefore a formal description of the structure of
hybrid paradigm will not suffice unless it is read-
ily transformable to the form describing the inter-
action. There are deeper questions behind this is-
sue: Is it possible to predict or describe interaction
of the agent with its environment based on the in-
ner structure of the agent? To what degree does
the structure contribute to the agent’s interaction
and performance? Are there some generally better
structures?

• Similar considerations apply for the results as for
the previous case. Also, a comparison with the re-
sults of the induction can tell us how do the cur-
rent hybrid systems fulfill the potential of the hy-
brid paradigm. This also applies for a comparison
with an individual system.

4.3 Possibilities of Evaluating Presumptions of
Intelligence of the Paradigms of AI

Taking the idea of evaluation one step further, it should be
possible to evaluate existing paradigms of AI. Again, an in-
ductive approach based on AIQ tests and formal analyses of
systems developed according the paradigms could be taken.
Also, a deductive approach based on formal descriptions of
AI paradigms and Universal Intelligence definition could be
entertained. Let us now briefly consider requirements and
possible results of such an endeavor.

1. Induction from AIQ test results and formal analyses:
• As the approach is basically the same as in the pre-

vious section, only applied to a broader set of sys-
tems and paradigms, mentioned requirements and
considerations also apply.

• However, the issue of comparability of results is
even more significant. Due to the way the Univer-
sal Intelligence definition and the derived AIQ test
were constructed, the comparability issue should be
taken care of. That is, as long as it is possible to test
and analyze the systems from the point of view of
their interaction with different environments, their
different structure will not matter in any other way
than in which it contributes to their performance.

• The results can be used to compare existing
paradigms of AI to each other. A hypothesis is
held, that the hybrid paradigm is more suitable
for reaching AGI. This is based on the fact that it
synergically combines symbolic and connectionist
paradigms as well as some philosophical consider-
ations regarding the nature of the mind. That it-
self, obviously, cannot validate the hypothesis. An
evaluation on this level, however, should make the
validation possible.

• The considered level of evaluation is high enough
to contribute to the correctness of the very notion
of functionalism. As the realization of the func-
tion according to functionalism does not matter,
than if it is correct, the results should be generally
the same for all the paradigms with some caveats.
There is the recurrent issue of determining if the
tested system represents well its paradigm, or if it is
just poorly implemented, and if this could skew the
results unfavorably for a certain paradigm. Also,
if the results were not reasonably comparable, it
would not disprove functionalism, as it may be that
just some paradigm is poor.

• The results could also contribute to the question of
attainability of AGI, on condition that the concept
is more precisely specified with respect to AIQ or



the Universal Intelligence. A possible way may be
to use fuzzy intervals over AIQ values.

2. Deduction from formal description of AI paradigms:
• Considerations for deduction mentioned by the pre-

vious section also apply.
• Also, the comparability of results ensured mainly

by the Universal Intelligence definition is more sig-
nificant at this level.

• Considered deductive approach can contribute as
well to validation of the hypothesis of suitability
of the hybrid paradigm for AGI.

• The deduction can as well be instrumental in sup-
porting the functionalism. Compared to the induc-
tive approach, there would be a benefit in not need-
ing to deal with whether a system is implemented
well or not.

• Similarly, the attainability of AGI could be some-
what enlightened.

• Having both the results of the inductive approach as
well as the deductive approach, their comparison
can further clarify and support the finding in the
above mentioned areas.

5 Conclusion and Future Work
The paper summarized philosophical and cognitive presump-
tions of intelligence in order to better grasp what artificial
intelligence should strive for. The strong – weak and gen-
eral – specific AI distinctions were described to illustrate the
opposing interpretations of the main goal of the AI. Special
attention was given to recent achievements in defining intel-
ligence. The Universal Intelligence definition of Legg and
Hutter [2007] was presented, as well as its approximation the
AIQ test by Legg and Veness [2013].

Further, the paper described existing paradigms of AI. Be-
ginning with traditional symbolism and biologically inspired
connectionism, the paper especially noted the hybrid ap-
proach, since it focuses on finding a synergic combination of
the two paradigms. Approaches of situated cognition which
stress out the role of body and perception – action interaction
of an agent with its environment were also noted.

Finally, the paper discussed possibilities of evaluating AI
from the AGI point of view on different levels of abstraction.
Basically the Universal Intelligence definition can be used
for formal analysis of presumptions of intelligence, while the
AIQ test can be used for practical testing. A specific system
can be evaluated, or the focus can be more general on a spe-
cific paradigm or even on all paradigms. Using the AIQ test
calls for an inductive approach with induction-specific limi-
tations, while using the Universal Intelligence definition re-
quires a deductive formal analysis based on a formal specifi-
cation of a system or a paradigm. While the results of the AIQ
test can be used to compare systems and paradigms, and also
to compare incremental versions of them, the results cannot
easily identify ways in which an extension of a system should
be attempted. If an evaluation of all paradigms is undertaken,
it can provide some clues for the validity of functionalism,
however it cannot disprove it. Also, this level of evaluation

can validate the hypothesis that hybrid paradigm is more suit-
able for AGI than other approaches. All in all it seems that
focusing on evaluation of AI systems and paradigms can be
worth of further research.

Mentioning that, there is future work to be done in several
areas, ranging from practical to theoretical. Practical issues
include identifying ways of choosing AI systems suitable for
AIQ testing and specifying a set of criteria for the choice.
Also, technical means of interfacing the system with the test
should be found. On the theoretical side, the research should
focus on devising interaction-based formal descriptions of
systems so that they could be analyzed using the Universal
Intelligence definition. Attention should be also given to find-
ing the ways of transformation existing structural formalisms
into interaction-based. Generalizations of such formalisms
should be looked for to facilitate the analysis on the level of
AI paradigms.
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univerzita, Opava, 1 edition, 2014.

[Walter, 2010] Sven Walter. Locked-in syndrome, bci, and a
confusion about embodied, embedded, extended, and en-
acted cognition. Neuroethics, (3):61–72, 2010.


