
Knowledge Extraction from Deep Belief Networks for Images

Son N. Tran
City University London

Northampton Square, EC1V 0HB, UK
Son.Tran.1@city.ac.uk

Artur d’Avila Garcez
City University London

Northampton Square, EC1V 0HB, UK
aag@soi.city.ac.uk

Abstract

In this paper, we introduce a rule extraction method
for discovering knowledge in a set of images using
Deep Belief Networks. The method is shown
to be useful at pruning the networks trained
on image datasets, explaining the relationship
between a label and the data distribution, and
training the networks on related image datasets.
Deep architectures have been studied intensively
recently thanks to their applicability on different
areas of Machine Learning. Considerable success
has been achieved in a number of application
areas, notably in image, video and multimodal
classification and retrieval tasks. We argue that
knowledge extraction from deep networks can
provide further improvements in specific areas and
a wider applicability of such networks through
a better understanding and explanation of the
relations between network layers. To the best
of our knowledge, this is the first knowledge
extraction system for deep networks. Keywords:
Deep Belief Networks, Neural-Symbolic Integra-
tion, Knowledge Extraction, Vision and Perception.

1 Introduction
Recent publications indicate the emergence of two interest-
ing sub-areas of Machine Learning: deep networks [Lee et
al., 2009b], [Lee et al., 2009a] and neural-symbolic systems
[Borges et al., 2011], [Aha et al., 2010]. While the former
have been shown capable of learning and representing fea-
tures effectively in different application areas, the latter has
successfully proved a strong relation between logic and con-
nectionist systems. Deep architectures have been studied in-
tensively recently thanks to their applicability to different ar-
eas of Machine Learning [Bengio, 2009]. Considerable suc-
cess has been achieved in a number of application areas, no-
tably in image, video and multimodal classification and re-
trieval tasks [Ji et al., 2010]. Following a neural-symbolic
approach, we argue that knowledge extraction from deep net-
works can provide further improvements in specific problem
domains and a wider applicability of such networks through

a better understanding and explanation of the relations be-
tween network layers. Hence, in this paper, we focus atten-
tion on the problem of knowledge extraction [d’Avila Garcez
et al., 2001] from deep networks. We start by proposing a
method for knowledge extraction from Restricted Boltzmann
Machines (RBMs) [Smolensky, 1986], which can be seen as
the basic building block of deep networks. We then unroll
this method into an approach for extracting logical represen-
tations from Deep Belief Networks (DBN). We present a new
extraction algorithm and experimental results on pruning the
networks trained on image datasets, explaining the relation-
ship between a label and the data distribution, and transfer-
ring the extracted knowledge to train the networks on related
image datasets. To the best of our knowledge, this is the
first knowledge extraction system for deep networks. The ap-
proach is inspired by and extends the idea of penalty logic
[Pinkas, 1995], which was applicable originally to shallow
symmetrical networks, and applied in modified form recently
to recurrent temporal restricted Boltzmann machines [de Pen-
ning et al., 2011]. We expect knowledge extraction to serve
as a tool to help analyse how representations are built in the
different layers of the network, and in the study of the rela-
tionship between the depth of DBNs and performance. In a
nutshell, this paper shows that, given a trained DBN, logical
rules of the forms hj ↔ v1 ∧ ¬v2 ∧ v3 can be extracted from
each pair of layers, each rule having a confidence value (de-
fined in what follows). Here, the proposition hj represents
the activation state of a unit j in a layer, and the proposi-
tion vi(i = 1, 2, 3) represents the activation state of a unit i
in a layer immediately below it (hence, vi denotes that i is
activated, and ¬vi denotes that i is deactivated). Rules can
be chained down all the way to the visible layer so that the
extracted rule set can be compared with the DBN in terms,
for example, of the images that they generate (experiments
section below). The rules can be inspected or queried taking
into consideration any subset of the set of layers, hopefully
shedding light into the structure of the network and the role
of each layer/set of neurons. This will be visualized in the
case of a handwritten digit case study. Also, the chaining be-
tween layers can be analysed more explicitly with the use of
the rules’ confidence values. The remainder of the paper is
organised as follows. In Section 2, we introduce the relevant
background on DBNs and penalty logic. In Section 3, we
introduce an extraction method for RBMs. In Section 4, we

introduce the extraction approach and algorithm for DBNs.
In Section 5, we present and discuss the experimental results,
and in Section 6 we conclude and discuss directions for future
work.

2 Background
In this section, we define the notation used in the paper and
briefly recall the constructs of DBNs and penalty logic used
later by the extraction algorithm.

A DBN is constructed by stacking several restricted Boltz-
mann machines (RBMs) [Smolensky, 1986]. Theoretically,
this can be done by adding complementary prior proba-
bilities so that the joint distribution will lead to a factorial
posterior [Hinton et al., 2006]. In a two-layered graphical
model, if the joint distribution is of the form P (x, y) =
1
C exp(

∑
i,j Ψi,j(xi, yj) +

∑
i γi(xi) +

∑
j αj(yj)) then

there will exist complementary priors that make:

P (x|y) =
∏
i

P (xi|y)

P (y|x) =
∏
j

P (yj |x)

The joint distribution of an RBM with visible layer v and
hidden layer h, when its global state reaches equilibrium, is
exactly of the form above, more precisely:
P (v, h) = 1

Z exp(−
∑

i,j viwijhj −
∑

i aivi −
∑

j bjhj).

The equilibrium state of an RBM can be achieved by
Gibbs samplings for long iterations [Hinton et al., 2006].
This process simulates the idea of creating an infinite stack
of directed RBMs with fixed weights and then, from the very
top layer, performing a down-pass sampling. The units in
the bottom pair of layers would represent the equilibrium
state of the corresponding RBM. In practice, a DBN has an
undirected RBM at the top to simulate the upper-part infinite
stack and several directed RBMs underneath.
Training a DBN starts from the lowest component model
upwards, each component model (an RBM) is trained in the
normal way using Contrastive Divergence [Carreira-Perpinan
and Hinton, 2005]. This greedy training has been shown
capable of approximating well enough the idea of comple-
mentary priors; however, to improve performance of DBNs
as a classifier an additional back-propagation training phase
is normally applied [Hinton et al., 2006].
After training, each unit in the hidden layer is seen as a
holder of features learned from the data. Higher layers in the
hierarchy are expected to represent more concrete features
such as edges, curves and shapes (in the case of image
datasets as used in this paper). In [Hinton et al., 2006],
the exact reconstruction of the data from labels is tested by
clamping a softmax unit and performing Gibbs sampling at
the top layer followed by a down-pass through the network
to the visible units. This ”clamping” method samples visible
states using the distribution P (v|hlj = 1). This is also used
by [Erhan et al., 2009] to visualize features in the network’s
second hidden layer, which is a form of ”extraction”. In
[Erhan et al., 2009], a visualization method is also introduced

following the idea of finding visible states which maximize
the activation of a hidden unit,

∗
v= arg max

v
P (hlj = 1|v).

In [Pinkas, 1995], symmetric connectionist systems char-
acterised by an energy function have been shown equiva-
lent to sets of pairs of logic formulae and real numbers
{< pi, fi >}. The real number pi is called a ”penalty” and
the set of pairs of formulas is known as a penalty logic well-
formed formula or PLOFF. Here, extraction is explicit in that
it produces symbolic knowledge rather than visualizations. In
[Pinkas, 1995], a connectionist system and a rule set are said
to be equivalent if and only if there exists a ranking function
Vrank for the latter such that: Vrank(~x) = E(~x) + c, where
c is a constant and E is the energy function of the system. In
the case of an RBM, this can be defined as:
E(h, v) = −

∑
i,j viwijhj −

∑
i aivi −

∑
j bjhj

with the corresponding extracted rules being:
{〈wij , vi ∧ hj〉|wij > 0} ∪ {〈−wpq,¬(vp ∧ hq)〉|wpq < 0}
and with ranking function the sum of the penalties of the
pairs whose formulae are violated given truth-values for h,v.
Since RBMs are also symmetric connectionist systems, in
what follows we present an extension of the penalty logic ap-
proach to rule extraction that is suitable for DBNs.

3 Knowledge Extraction from RBMs
In this section, we apply and modify the idea of penalty logic
to extract knowledge from an RBM model. However, for rea-
sons that will become clear in what follows, instead of rewrit-
ing the model as a set of formulas associated with a ranking
function, a set of rules will be extracted and used for infer-
ence to evaluate how closely the rules represent the behaviour
of the network model.

The propositional knowledge captured from an RBM N =
{V,H,W} can be represented as:

R = {〈wij : vi∧hj〉|wij > 0}∪{〈−wpq : ¬(vp∧hq)〉|wpq < 0}

The extracted set of rules will capture the behaviour of an
RBM, as has been discussed in the previous section. How-
ever, they are not as capable of expressing the relationships
between the features represented by units in the RBM’s hid-
den layer and raw data encoded in its visible layer (e.g. an
image). Moreover, they are not capable of representing rela-
tionships among input variables. Finally, the penalty logic ap-
proach would extractNv×Nj rules from an RBM, which is a
concern in the case of a model with thousands of units such as
the RBMs or DBNs used for image processing. We propose
an alternative based on the concept of partial and complete
model, as below.

Proposition 3.1. For each unit hj in the hidden layer
of an RBM, it is possible to extract a single rule in the
weighted-if-and-only-if (weighted-IFF) form:

cj : hj ↔
∧
i

vi ∧
∧
t

¬vt

where vi and vt correspond to the activated unit i and deac-
tivated unit j in the visible layer. The rule’s confidence-value
is given by cj =

∑
vi
wij −

∑
vt
wtj

Definition 3.1. (partial-model): A partial-model of a unit hj
in the hidden layer of an RBM is a weighted-IFF rule of the
form:

cj : hj ↔
∧

i,wij>0

vi ∧
∧

t,wtj<0

¬vt

Proposition 3.2. The partial-model of a unit in the hidden
layer of an RBM is the rule with the highest confidence-value
possibly extracted from that unit.

However, it is difficult to use the partial-model for infer-
ence because it does not capture information about the weight
values between the set of input units and hidden unit hj in
the rule. This problem can be solved by having a complete
model, as follows.
Definition 3.2. (complete-model): A complete-model for a
unit hj in an RBM is a partial-model associated with a list
of the absolute values of the weights between the units corre-
sponding to conjuncts in the rule and hj . It can be denoted
as:

cj : hj
hvj↔

∧
i,wij>0

vi ∧
∧

t,wtj<0

¬vt

with hvj = {|w1j |, |w2j |,, |wNvj |}
In what follows, we investigate the pros and cons of partial-

models and complete-models at representing RBMs. We start
with an example.
Example (learning XOR function): We examine the theory
by training an RBM to model a XOR function from its truth-
table, where true and false are represented by 1 and 0, re-
spectively. Our goal is to compare the rules extracted from
trained RBMs having inputs x, y, z with different numbers of
hidden units, against the rules of the XOR function as shown
in Table 1.

X Y Z Rules
0 0 0 > ↔ ¬x ∧ ¬y ∧ ¬z
0 1 1 > ↔ ¬x ∧ y ∧ z
1 0 1 > ↔ x ∧ ¬y ∧ z
1 1 0 > ↔ x ∧ y ∧ ¬z

Table 1: XOR problem: Truth-table and rules defining the
conditions for activating hidden unit >. All other truth-value
assignments not specified by the rules should not activate any
hidden unit.

Training z↔ x⊕y in an RBM should also imply x↔ y⊕z
and y ↔ x ⊕ z, given the symmetry of the network. Three
RBMs having, respectively, 1, 3 and 10 hidden units were
trained using Contrastive Divergence and the same learning
parameters. After training, partial-model rule sets were ex-
tracted, as shown in Table 2. Notice how the rules in Table
2 that do not match a rule in Table 1 have a much smaller
confidence value. In fact, if we were to remove the rules with
confidence value smaller than the mean confidence for each
rule set, only the rules that match the description of the XOR
function from Table 1 would have been kept in Table 2. It is
interesting to see that partial models have been able to cap-
ture the correct relationships between the input variables in

#hiddens Extracted rules

1 17.9484 : h1 ↔ x ∧ y ∧ ¬zX
1.499 : > ↔ ¬x ∧ ¬y ∧ z

3

24.7653 : h1 ↔ ¬x ∧ y ∧ zX
23.389 : h2 ↔ x ∧ y ∧ ¬zX
27.1937 : h3 ↔ ¬x ∧ ¬y ∧ ¬zX
13.4209 : > ↔ x ∧ ¬y ∧ zX

10

4.0184 : h1 ↔ x ∧ ¬y ∧ zX
8.9092 : h2 ↔ x ∧ ¬y ∧ zX
18.4939 : h3 ↔ ¬x ∧ y ∧ zX
0.5027 : h4 ↔ ¬x ∧ y ∧ ¬z
7.4417 : h5 ↔ x ∧ ¬y ∧ z X
5.0297 : h6 ↔ ¬x ∧ y ∧ z X
7.6313 : h7 ↔ x ∧ ¬y ∧ z X
22.0653 : h8 ↔ x ∧ y ∧ ¬zX
19.6188 : h9 ↔ ¬x ∧ ¬y ∧ ¬zX
14.6054 : h10 ↔ ¬x ∧ ¬y ∧ ¬zX
3.4366 : > ↔ x ∧ y ∧ z

Table 2: Rules extracted from RBMs trained on the XOR
function (X means the rule matches a rule in Table 1).

this example, despite the inherent loss of information of par-
tial models. Complete-models, with their confidence vectors,
should be able to represent the behaviour of the network al-
most exactly, but partial models do not contain weight values,
as discussed earlier. In what follows, we continue this analy-
sis by applying the definitions of partial and complete models
to DBNs.

4 Knowledge Extraction from DBNs
Since the structure of a DBN can be seen as a stack of RBMs,
the simplest method for extracting knowledge from a DBN
is to combine the rules extracted from each RBM. Hence, the
rules extracted from a DBN can be represented (using partial-
models) as:

R = {c(1)j : h
(1)
j ↔

∧
i,w

(0)
ij >0

vi ∧
∧

t,w
(0)
tj<0

¬vt}

L−1⋃
l=1

{c(l+1)
j : h

(l+1)
j ↔

∧
i,w

(l)
ij >0

h
(l)
i ∧

∧
t,w

(l)
tj<0

¬h(l)t }

In the case of complete-models each rule is also associated
with a confidence-vector, as discussed in the previous sec-
tion.
Even though DBNs are stochastic systems, our experiments
have shown that deterministic inference on the extracted rules
can capture the behaviour of the networks. Taking a pair
〈wij , vi ∧ hj〉 with wij > 0, it is clear that if vi is activated
(vi = 1), hj should also be activated with confidence value
wij (since we are interested in minimizing the energy func-
tion). Similarly, for a pair 〈−wij ,¬(vi ∧ hj)〉 (wij < 0 in
this case), if vi is activated then the energy will decrease only
if hj is not activated (hj = 0) with confident value −wij .
Therefore:

hj =

{
1 if vi = 1 and wij > 0

0 if vi = 1 and wij < 0
(Eq.1)

with confidence value |wij |.
A confidence value is the dual of the penalty in [Pinkas,

1995] and it represents how reliable (or likely to activate)
a unit is when another unit connected to it is already acti-
vated. However, it is not easy to determine the activation
state of a unit when it appears in different rules with pos-
itive and negative weights, respectively. For example, let
{〈wij , vi ∧hj〉|wij > 0}∪ {〈−wij ,¬(vi ∧hj)〉|wij < 0} be
a subset of the rules containing hj , and Sumj =

∑
i,vi=1 wij

be the sum of the weights of the connections between hj and
all activated units vi. If Sumj > 0, we say that the posi-
tive rules are more likely than the negative rules; hence, hj
is more likely to activate. We can check this by looking at
the activation of hj : P (hj = 1) = 1

1+exp(−
∑

i wijvi)
=

1
1+exp(−Sumj)

, in which the larger Sumj is, the higher the
probability is of hj being activated. From this, we can also
see that if Sumj < 0 then one should have less confidence in
the activation of hj , that is, the probability of hj being acti-
vated should be low.
In general, the inference rule for our extracted rules, where
c, α1, α2, . . . , αn, αh are confidence-values, should be:

c : h
w1,w2,...,wn↔ belief1 ∧ ¬belief2 ∧ . . . ∧ beliefn

α1 : belief1

α2 : belief2

...
αn : beliefn

αh : h with αh = w1α1 − w2α2 + . . .+ wnαn

In the case of partial-models, αh = c/n.
When rules are extracted from a deep architecture, first one
should apply the above inference rule to derive hypotheses
for the first RBM in the stack, and then repeat the process,
assuming that those derived hypothesis are beliefs, in order
to infer new hypotheses for the second RBM in the stack, and
so on. For this, the confidence value of a belief should be
normalized to [0, 1] using, e.g., a sigmoid function. Alterna-
tively, one might set the confidence value of a belief to 1, if
the confidence value of its associated hypothesis is positive,
or 0 otherwise.

5 Experiments and Results
In this section, we validate empirically the connection be-
tween logical rules and stochastic sampling established above
by extracting rules and visualizing features of Deep Belief
Networks. We also present new results on transfer learn-
ing using rule extraction. We have trained a system with
784, 500, 500 and 2000 units over four layers on 5000 ex-
amples from the MNIST handwritten digit dataset [Hinton et
al., 2006]. Some of the rules extracted from the deep network
are shown below [Son Tran and Garcez, 2012].

0.99250 : h20 ↔ ¬h10 ∧ h11 ∧ ¬h12 ∧ ...¬h1783
0.99250 : h10 ↔ ¬v00 ∧ v01 ∧ ¬v02 ∧ ...¬v0783
1.00000 : h11 ↔ ¬v00 ∧ ¬v01 ∧ ¬v02 ∧ ...¬v0783

where the confidence values have been normalized by a sig-
moid function, and hlj represents a unit j of hidden layer l.

Let us consider the use of logical inference, as discussed
above, to try and visualize the features captured by the units
in the second hidden layer. In this experiment, the confidence
value of a belief b associated with a hypothesis c : h is set to 1
if c > 0, and 0 otherwise. Figure 1 shows the progression of
10 images (from left to right) generated using network sam-
pling (shown in the top row) and the above, sign-based, logi-
cal inference (shown in the bottom-row). The results indicate
information loss, as expected, but also suggest that inference
with sign-based activation should be faster than network sam-
pling; the network might have several local minima for each
concept, so that each image was generated after intervals of
10 iterations, totalling 100 iterations in the network). We then

Figure 1: Images generated from network samplings
(top row) and logical inference using sign-based activa-
tion/confidence value calculations (bottom row).

added labels to the network for classification. The labels are
added to the visible layer of the top RBM in the hierarchy as
soft-max units [Hinton et al., 2006]. After training on 60, 000
samples of the MNIST dataset, the network achieved 97.63%
accuracy on a test set consisting of 10, 000 samples. If we
apply logical inference using a sigmoid function to normalize
the confidence values, the rules achieve 93.97% accuracy on
the same test set. If we then clamp the labels and reconstruct
the input images, it can be verified that logical inference can
generate fairly similar images, as depicted in Figure 2, where
the top row shows the images generated by the network us-
ing Gibbs sampling, and the bottom row shows the images
produced by inference.

Figure 2: Images reconstructed by clamping labels of DBN
and using Gibbs sampling (top row), and by setting hypothe-
ses to true in the set of rules and using logical inference (bot-
tom row).

5.1 System Pruning
The goal here is to use the confidence value of each rule to
evaluate the contribution of its corresponding hidden unit in
an RBM (or in the hidden layers of a DBN), removing from
the system the “weak” hidden units, i.e. those with a low con-
fidence value. We shall test the drop in network performance
as a measure of usefulness of a rule’s confidence value. Rules
were extracted from an RBM trained on the MNIST dataset.
Rules with confidence value smaller than a specified thresh-
old were removed, and the remaining rules were re-encoded

into a smaller RBM. The performance of the new RBM can
be evaluated by comparing the reconstruction of images with
that done by the original RBM, as illustrated in Figure 3.

(a) (b) (c) (d)

Figure 3: The reconstructed images from original RBM
trained on 60,000 samples (3a), RBM encoding 382 rules
with highest confidence values (3b), RBM encoding 212 rules
with highest confidence values (3c), and RBM encoding 145
rules with highest confidence values (3d).

Figure 3 indicates that it is possible to remove rules/hidden
units and maintain performance, with the behaviour of the
system remaining pretty much unchanged until some “impor-
tant” rules start to be removed. In order to measure this more
precisely, we have provided the features obtained from the
RBMs as an input to an SVM classifier. Figure 4 shows the
relationship between accuracy and the sizes of the RBMs. In-
terestingly, at first, accuracy has increased slightly, and has
remained stable until some 50% of the hidden units had been
removed. It then started to deteriorate rapidly, but was still
at around 95% when 400 of the 500 hidden nodes were re-
moved.

Figure 4: Classification performance of SVM on MNIST
dataset with input features from RBM whose hidden layer
is reduced by removing hidden units with lower confidence
values.

5.2 Transferring Knowledge
Rule extraction in the context of images may find application
in transfer learning [Torrey et al., 2010]. To evaluate this,
we have extracted rules from a network trained on an im-
age dataset and encoded a subset of these rules on another
network to be trained on a related image dataset. In par-
ticular, we have measured classification performance when

transferring from the handwritten digit dataset to natural im-
ages of digits, and to writing styles, as shown in Figure 5.
We have trained an RBM on 5,000 images from the MNIST
dataset, extracted and pruned the rules before transferring
them to RBMs that were trained on natural images of dig-
its (ICDAR dataset1) and on character writing styles (TiCC
dataset[Maaten, 2009]). Figure 5 shows some examples from
the source and target domains.

Figure 5: Visualization of MNIST images (top left), ICDAR
images (top right), and TiCC character images (below) for
five writers (one per line).

We started by extracting and transferring all complete-
models. This is basically the same as using the RBM trained
on MNIST as the starting point for training in the new do-
mains (ICDAR and TiCC). The RBM was then augmented
with newly-added hidden neurons for training in the new do-
mains. The transferred knowledge is expected to help learn-
ing in the new domains; this knowledge was kept unchanged,
with only the weights of the newly-added neurons being al-
lowed to change. The results were put through an SVM to
provide a classification measure, for the sake of compari-
son. As expected, in the case of transferring complete-models
from MNIST to ICDAR, we have observed a small improve-
ment in classification performance: the network trained with
transfer achieved 51.55% accuracy on the ICDAR dataset,
while a knowledge-free RBM achieved 50.00%. We also ran
just an SVM on the raw data, which achieved 38.14% ac-
curacy. A slightly better improvement was observed when
transferring from MNIST (handwritten digits) to TiCC (hand-
written characters) in order to recognize writing styles. Table
3 shows all the results.

Target SVM RBM RBM with Transfer
ICDAR 38.14% 50.00% 51.55%
TiCC 72.94% 78.82% 81.18%

Table 3: Comparison with RBM with transfer learning

It is generally accepted that the performance of a model in
a target domain will depend on the quality of the knowledge it

1http://algoval.essex.ac.uk:8080/icdar2005/index.jsp?page=ocr.html

receives and the structure of the model. We then evaluate per-
formance also using different sizes of transferred knowledge.
Figure 6 shows that if this size is too small, the model will be
dominated by the data from the target domain. If, on the other
hand, this size is too large, the model might not learn from the
target domain, with a consequent drop in performance as the
model responds mainly to the knowledge transferred. Further
analysis of our rule extraction method might help guide this
transfer process, which nevertheless could turn out to be a
domain-dependent task.

Figure 6: Performance with different sizes of transferred
knowledge on the TiCC dataset: for each number of rules
transferred, we have added zero, 30, 50, 100, 200, 500 and
1000 nodes to the network. Each network was tested 50 times
with the graph showing the mean accuracies and standard de-
viations. Our results also indicate that adding 1000 nodes
produce worse accuracy than adding no nodes at all, with the
best performance at 200 extra nodes.

6 Conclusions And Future Work
We have proposed a knowledge extraction method and have
applied it to deep belief networks trained on images. The re-
sults indicate that a deep belief network can be represented by
a set of rules with logical inference serving as an alternative to
stochastic sampling. In addition, by transferring the extracted
rules onto a target domain, classification performance can be
improved on that domain. As future work, we are interested
in studying the relationships between rules’ confidence val-
ues and networks in a more systematic way, and in using rule
extraction based on partial models to guide transfer learning.

References
[Aha et al., 2010] David W. Aha, M. Boddy, V. Bulitko, and

A. S. d’Avila Garcez et al. Reports of the AAAI 2010
conference workshops. AI Magazine, 31(4):95–108, 2010.

[Bengio, 2009] Y. Bengio. Learning deep architectures for
AI. Foundations and Trends in Machine Learning, 2(1):1–
127, 2009.

[Borges et al., 2011] Rafael V. Borges, Artur S. d’Avila
Garcez, and Luı́s C. Lamb. Learning and representing tem-
poral knowledge in recurrent networks. IEEE Transactions
on Neural Networks, 22(12):2409–2421, 2011.

[Carreira-Perpinan and Hinton, 2005] M. A. Carreira-
Perpinan and G. E. Hinton. On contrastive divergence
learning. Artificial Intelligence and Statistics, January
2005.

[d’Avila Garcez et al., 2001] A.S. d’Avila Garcez, K. Broda,
and D.M. Gabbay. Symbolic knowledge extraction from
trained neural networks: A sound approach. Artificial In-
telligence, 125:155–207, 2001.

[de Penning et al., 2011] Leo de Penning, Artur S. d’Avila
Garcez, Luı́s C. Lamb, and John-Jules Ch. Meyer. A
neural-symbolic cognitive agent for online learning and
reasoning. In IJCAI, pages 1653–1658, 2011.

[Erhan et al., 2009] Dumitru Erhan, Yoshua Bengio, Aaron
Courville, and Pascal Vincent. Visualizing higher-layer
features of a deep network. Technical Report 1341, Uni-
versity of Montreal, June 2009.

[Hinton et al., 2006] Geoffrey E. Hinton, Simon Osindero,
and Yee-Whye Teh. A Fast Learning Algorithm for Deep
Belief Nets. Neural Comp., 18(7):1527–1554, July 2006.

[Ji et al., 2010] Shuiwang Ji, Wei Xu, Ming Yang, and Kai
Yu. 3d convolutional neural networks for human action
recognition. In ICML, pages 495–502, 2010.

[Lee et al., 2009a] Honglak Lee, Roger Grosse, Rajesh Ran-
ganath, and Andrew Y. Ng. Convolutional deep belief net-
works for scalable unsupervised learning of hierarchical
representations. In Proceedings of the 26th Annual In-
ternational Conference on Machine Learning, ICML ’09,
pages 609–616, New York, NY, USA, 2009. ACM.

[Lee et al., 2009b] Honglak Lee, Yan Largman, Peter Pham,
and Andrew Y. Ng. Unsupervised feature learning for
audio classification using convolutional deep belief net-
works. In Advances in Neural Information Processing Sys-
tems 22, pages 1096–1104. 2009.

[Maaten, 2009] Laurens Maaten. Visualizing higher-layer
features of a deep network. Technical Report 1341, Uni-
versity of Montreal, June 2009.

[Pinkas, 1995] Gadi Pinkas. Reasoning, nonmonotonicity
and learning in connectionist networks that capture propo-
sitional knowledge. Artificial Intelligence, 77(2):203 –
247, 1995.

[Smolensky, 1986] Paul Smolensky. Information processing
in dynamical systems: Foundations of harmony theory. In
In Rumelhart, D. E. and McClelland, J. L., editors, Paral-
lel Distributed Processing: Volume 1: Foundations, pages
194–281. MIT Press, Cambridge, 1986.

[Son Tran and Garcez, 2012] Son Tran and Artur Garcez.
Logic extraction from deep belief networks. In ICML 2012
Representation Learning Workshop, Edinburgh, July 2012.

[Torrey et al., 2010] Lisa Torrey, Jude W. Shavlik, Trevor
Walker, and Richard Maclin. Transfer learning via advice
taking. In Advances in Machine Learning I, pages 147–
170. 2010.

