# Knowledge Extraction from DBNs for Images

#### Son N. Tran and Artur d'Avila Garcez

Department of Computer Science City University London

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

#### Contents



- 2 Knowledge Extraction from DBNs
- 3 Experimental Results on Images



4 Conclusion and Future Work

### Motivation

- Deep networks have shown good performance in image, audio, video and multimodal learning
- We would like to know why by studying the role of symbolic reasoning in DBNs. In particular, we would like to find out:
  - How knowledge is represented in deep architectures
  - Relations between Deep Networks and a hierarchy of rules
  - How knowledge can be transferred to analogous domains

## Restricted Boltzmann Machine

- Two-layer symmetric connectionist system [Smolensky, 1986]
- Represents a joint distribution P(V, H)
- Given training data, learning by Contrastive Divergence (CD) seeks to maximize  $P(V) = \sum_{h} P(V, H)$
- It can be used to approximate the data distribution given new data (rather like an associative memory)





▲□▶▲□▶▲□▶▲□▶ □ のQで

#### Restricted Boltzmann Machine (details)

- Generative model that can be trained to maximize log-likelihood  $\mathcal{L}(\theta|\mathcal{D}) = \log(\prod_{x \in D} P(v = x))$ , where  $\theta$  is set of parameters (weights and biases) and  $\mathcal{D}$  is a training set of size *n*
- $P(v = x) = \frac{1}{Z} \sum_{h} \exp(-E(v, h))$ , where *E* is the energy of the network model
- This log-likelihood is intractable since it is not easy to compute partition function  $Z = \sum_{v,h} \exp(-E(v,h))$
- But it can be approximated efficiently using CD [Hinton, 2002];  $\Delta w_{ij} = \frac{1}{n} \sum_{n} (v_i h_j)_{step0} - \frac{1}{n} \sum_{n} (v_i h_j)_{step1}$

・ロト ・聞 ト ・ 聞 ト ・ 聞 ト ・ 聞

## Deep Belief Networks

Deep Belief Networks [Hinton et al., 2006]

- Stack of RBMs
- Greedily learns each pair of layers bottom-up with CD
- Fine tuning option 1: Split weight matrix into up and down weights (wake-sleep algorithm)
- Fine tuning option 2: Use as feedforward neural network and update weights using BP



<ロト < 同ト < 回ト < 回ト = 三日 = 三日

# Deep Belief Networks (example)

- The lower level layer is expected to capture low-level features
- Higher level layers combine features to learn progressively more abstract concepts
- Label can be attached at the top RBM for classification







(second hidden layer - shapes)



#### Rule Extraction from RBMs: related work

- [Pinkas, 1995]: rule extraction from symmetric networks using *penalty logic*; proved equivalence between conjunctive normal form and energy functions
- [Penning et al., 2011]: extraction of temporal logic rules from RTRBMs using sampling; extracts rules of the form *hypothesist* ↔ *belief*<sub>1</sub> ∧, ..., ∧ *belief*<sub>n</sub> ∧ *hypothesis*<sub>t-1</sub>
- [Son Tran and Garcez, 2012]: rule extraction using confidence-value similar to penalty logic but maintaining implicational form; extraction without sampling

## Rule Extraction from RBMs (cont.)

- Both penalty [Pinkas, 1995] and confidence-value [Penning et al., 2011, Son Tran and Garcez, 2012] represent the reliability of a rule
- Inference with penalty logic is to optimize a ranking function, thus similar to weighted-SAT
- In [Penning et al., 2011], confidence-value is not used for inference, whilst confidence-values extracted by our method can be used for hierarchical inference

## Our method: partial-model extraction

- Extracts rules  $c_j : h_j \leftrightarrow \bigwedge_{w_{pj}>0} v_p \land \bigwedge_{w_{nj}<0} \neg v_n$
- $c_j = \sum_{w_{ij}>0} w_{ij} \sum_{w_{ij}<0} w_{ij}$  (i.e. sum of absolute values of weights); also applies to visible units  $v_i$
- Example:

 $15: h_0 \leftrightarrow v_1 \land \neg v_2 \land \neg v_3$  $7: h_1 \leftrightarrow v_1 \land v_2 \land \neg v_3$ 



• These rules are called *partial-model* because they capture partially the architecture and behavior of the network

### Our method: complete-model extraction

- Confidence-vector:  $\mathbf{h}_{j} = [|w_{1j}|, |w_{2j}|, ...]$
- Complete rules:  $c_j : h_j \stackrel{\mathbf{h}_j}{\leftrightarrow} \bigwedge_{w_{ij} > 0} v_i \land \bigwedge_{w_{ij<0}} \neg v_i$

$$15: h_0 \stackrel{[5,3,7]}{\leftrightarrow} v_1 \wedge \neg v_2 \wedge \neg v_3$$
$$7: h_1 \stackrel{[2,4,1]}{\leftrightarrow} v_1 \wedge v_2 \wedge \neg v_3$$



▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

### Inference

#### Inference

$$c:h \stackrel{[w_1,w_2,\ldots,w_n]}{\leftrightarrow} b_1 \wedge \neg b_2 \wedge \cdots \wedge b_n$$
$$\alpha_1:b_1,\alpha_2:\neg b_2,\ldots,\alpha_n:b_n$$

 $c_h$ : *h* where  $c_h = f(c \times (w_1\alpha_1 - w_2\alpha_2 + \dots + w_n\alpha_n))$ 

- α<sub>i</sub> : b<sub>i</sub> means that b<sub>i</sub> is believed to hold with confidence α<sub>i</sub>
  f is a monotonically nondecreasing function. We use either sign-based (f(x) = 1 if x > 0 otherwise f(x) = 0) or logistic function; f normalizes the confidence value to [0,1].
- *c* is the confidence of the rule; *c*<sub>*h*</sub> is the confidence of *h*
- In partial-models,  $w_i = \frac{c}{n}$ .
- The inference is deterministic (but stochastic inference is possible)

## Partial-model vs. Complete-model

Partial model: equalizes weights, can help generalization, good if weights are similar; information loss, otherwise Complete model: very much like the network, but difficult to visualize rules; baseline Example:



 $2: h_0 \leftrightarrow v_1 \wedge v_2$  $2: h_1 \leftrightarrow v_1 \wedge v_2$ 

Both rules have the same confidence-value but the first is a better match to  $h_0$  than the second is to  $h_1$ 

## XOR problem



If *z* is ground-truth then the combined, normalized rule is:  $0.999: z \leftarrow (x \land \neg y) \lor (\neg x \land y)$ 

### Logical inference vs. Stochastic inference

- DBN with 748-500-500-2000 nodes (+10 label nodes) was trained on MNIST handwritten digits dataset
- Figure shows the result of downward inference from the labels using the network (top) and using its complete model with a sigmoid function *f* for logical inference (bottom)
- To reconstruct the images from the labels using the network, we run up-down inference several times; to reconstruct the images from the rules, Gibbs sampling is not used, and we go downwards once through the rules

# System pruning

One can use rule extraction to prune the network by removing hidden units corresponding to rules with low confidence-value

• Reconstruction of images from pruned RBM



(a) 500 units (b) 382 units (c) 212 units (d) 145 units

Classification by SVM using features from pruned RBMs



## **Transfer Learning**

Problems in Machine Learning:

- Data in problem domain is limited
- Data in problem domain is difficult to label
- Prior knowledge in problem domain is hard to obtain

**Solution**: Learn the knowledge from unlabelled data from related domains which are largely available and transfer the knowledge to the problem domain.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

# Transferring Knowledge to Learn

Source domain: MNIST handwritten digits Target domains: ICDAR (digit recognition), TiCC (writer recognition)





(a) MNIST dataset (b) ICDAR dataset



(c) TiCC dataset

## **Experimental Results**

| Source:Target | SVM   | RBM   | PM Transfer | CM Transfer |
|---------------|-------|-------|-------------|-------------|
| MNIST : ICDAR | 68.50 | 65.50 | 66.50       | 66.50       |
|               | 38.14 | 50.00 | 50.51       | 51.55       |
| MNIST : TiCC  | 72.94 | 78.82 | 79.41       | 81.18       |
|               | 73.44 | 80.23 | 83.05       | 80.79       |



Figure : TiCC average accuracy vs. size of transferred knowledge

## Conclusion and Future Work

- New knowledge extraction method for Deep Networks
- Initial results on image datasets and transfer learning
- Future work: More results and analysis of rules' applicability to transfer learning (domain dependent?)
- Extraction of partial-models that approximate the network well (midway between complete and current partial model)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Best way of generalizing and revising rules after transferring them (knowledge insertion to close the learning cycle)

#### **References I**

#### Hinton, G. E. (2002).

Training products of experts by minimizing contrastive divergence. *Neural Comput.*, 14(8):1771–1800.

- Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006).
   A fast learning algorithm for deep belief nets.
   *Neural Comput.*, 18(7):1527–1554.
- Penning, L. d., Garcez, A. S. d., Lamb, L. C., and Meyer, J.-J. C. (2011).
   A neural-symbolic cognitive agent for online learning and reasoning.
   In *IJCAI*, pages 1653–1658.

#### **References II**

#### Pinkas, G. (1995).

Reasoning, nonmonotonicity and learning in connectionist networks that capture propositional knowledge. *Artificial Intelligence*, 77(2):203–247.

#### **Smolensky**, P. (1986).

Information processing in dynamical systems: Foundations of harmony theory.

In Rumelhart, D. E. and McClelland, J. L., editors, Parallel Distributed Processing: Volume 1: Foundations, pages 194–281. MIT Press, Cambridge.

Son Tran and Garcez, A. (2012).
 ICML logic extraction from deep belief networks.
 In ICML 2012 Representation Learning Workshop, Edinburgh.