
Evolution of Connections in SHRUTI Networks

Joe Townsend, Ed Keedwell and Antony Galton

Motivation

• Neural-Symbolic Reasoning: Adaptable representations of logic
programs in neural networks.

• Can help us understand how reasoning might be processed in the brain
using real biological neurons.

• Brains, and whatever mechanisms enable them to perform reasoning,
are products of evolution and development.

• Can neural-symbolic structures also be discovered through evolutionary
searches?

Artificial Development

• A biologically plausible model of
evolutionary computing.

• Has already been applied to the
development of neural networks

• Genomes use indirect encoding,
which like DNA, describes how the
phenotype develops over time.

• Sub-structures may be discovered
once in evolution and represented
once in the genome, but replicated
multiple times in the phenotype.

100110110101010 1110011100111101

R

SS

S

R

S S

Genome:

Phenotype:

Evolving Neural-Symbolic Networks

• Artificial Development been applied to the development of neural
networks in general, but not specifically to neural-symbolic networks.

• These should be considered if we are to move towards evolving
neural models of intelligence.

• To explore this idea, we have been attempting to rediscover and
improve upon SHRUTI networks through artificial development. SHRUTI
is suited for this task because:

• Biological plausibility was one of the goals of SHRUTI

• SHRUTI networks are constructed from smaller, repeated sub-
networks, thus lending themselves well to indirect encodings.

• Demonstrates how predicate logic can be
encoded in a network of neurons and used for
reasoning.

• Uses spiking neurons, which like biological
neurons, fire trains of pulses.

• Variable binding is performed by firing
neurons in temporal synchrony with each other.

• Bindings can be propagated from one set of
neurons to another.

x

x

a

a

x is bound to a

x is not bound to a

SHRUTI [Shastri & Ajjanagadde, 1993]

Give(John, Mary, Book)
Buy(Paul, x)

Give(x,y,z) → Own(y,z) Buy(x,y) → Own(x,y)

+
-
?

Role node

Positive collector

Negative collector

Enabler

Fact node

Inhibitor node

Give(John, Mary, Book)
Buy(Paul, x)

Give(x,y,z) → Own(y,z) Buy(x,y) → Own(x,y)

+
-
?

Role node

Positive collector

Negative collector

Enabler

Fact node

Inhibitor node

Phase 1:
Mary, owner

Phase 2:
Book, object(Own)

Own(Mary, Book)?

Give(John, Mary, Book)
Buy(Paul, x)

Give(x,y,z) → Own(y,z) Buy(x,y) → Own(x,y)

+
-
?

Role node

Positive collector

Negative collector

Enabler

Fact node

Inhibitor node

Phase 1:
Mary, owner,
Recipient, buyer

Phase 2:
Book, object(Own),
object(Give), object(Buy)

Own(Mary, Book)?

Give(x, Mary,
 Book)?

Buy(Mary,
 Book)?

Hebbian learning in SHRUTI

• A sequence of events in the form of predicate instances are observed.

• Observing an instance of P shortly before an instance of Q strengthens
connections for the relation P → Q according to:

ω
t+1

 = ω
t
 + α(1 - ω

t
)

• If P is observed but Q isn't within a fixed time window, connections for P
→ Q are weakened according to:

ω
t+1

 = ω
t
 – α ω

t

Training Data

Logic program:

• -P(x, y, z) → +Q(y, z)

• +Q(y, z) → +S(y, z)

• +Q(y, z) → -T(y, z)

• -R(z, x, y) → +S(y, z)

• +S(y, z) → -U(y)

Event sequence:

1. -P(a, b, c)
2. +Q(b, c)
3. +S(b, c), -T(b, c)
4. -U(b)
5.
6.
7. -R(f, d, e)
8. +S(e, f)
9. -U(e)
10.
11.

12.
13. -P(g, h, i)
14. +Q(h, i)
15. +S(h, i), -T(h, i)
16. -U(h)
17.
18.
19. -R(l, j, k)
20. +S(k, l)
21. -U(k)
22.

Prerequisites for learning

• A logic program can be learned from a network of fully interconnected
neurons.

• However, a fully interconnected network is impractical and lacks
biological plausibility.

• To reduce the size of the initial network while enabling all desired
relations to be learned, some pre-organisation is required.

• SHRUTI's developers argue that “such organization could result from a
genetically based developmental process” [Shastri & Wendelken, 2003]

• Finding a genome model that uses indirect encoding to develop
SHRUTI networks would support their biological plausibility.

Developing SHRUTI networks

• We have designed a genome for developing connections between
neurons in a SHRUTI network.

• For each t:

• 1. Observe events occurring at t

• 2. Adjust existing connection weights according to the Hebbian
learning algorithm.

• 3. For each neuron pair, add or delete connection depending on
rules define in genome...

Developing SHRUTI networks

Conditions:
1. If SELF.activity > 0.5, go to 3, else go to 2

2. If E_INPUT.weight < 0.1, go to 5, else end.

3. If P_INPUT.type = SELF.type, go to 4, else end.

Actions:
4. Add connection with weight 0.1

5. Delete connection

 3

 4

Rule 1
(R1)

 1

 2

 5

Rule 2
(R2)

SELF.activity < 0.5 3 2 E_INPUT.weight < 0.1 5 0 P_INPUT.type = SELF.type 5 0 ADD 0.1

1. Condition 2. Condition 3. Condition 4. Action

+ - ? x y

+ - ? x y

P(x,y)

Q(x,y)

The Genome:

Rules:

SHRUTI network:

• SELF: Neuron for which
connections are being
considered

• P_INPUT: Possible input

• E_INPUT: Existing input

T F

T T

DEL

5. Action

Developing SHRUTI networks

Conditions:
1. If SELF.activity > 0.5, go to 3, else go to 2

2. If E_INPUT.weight < 0.1, go to 5, else end.

3. If P_INPUT.type = SELF.type, go to 4, else end.

Actions:
4. Add connection with weight 0.1

5. Delete connection

 3

 4

Rule 1
(R1)

 1

 2

 5

Rule 2
(R2)

SELF.activity < 0.5 3 2 E_INPUT.weight < 0.1 5 0 P_INPUT.type = SELF.type 5 0 ADD 0.1

1. Condition 2. Condition 3. Condition 4. Action

The Genome:

Rules:

• SELF: Neuron for which
connections are being
considered

• P_INPUT: Possible input

• E_INPUT: Existing input

T F

T T

+ - ? x y

+ - ? x y

P(x,y)

Q(x,y)

SHRUTI network:

P(a,b)

Observation:

DEL

5. Action

Developing SHRUTI networks

Conditions:
1. If SELF.activity > 0.5, go to 3, else go to 2

2. If E_INPUT.weight < 0.1, go to 5, else end.

3. If P_INPUT.type = SELF.type, go to 4, else end.

Actions:
4. Add connection with weight 0.1

5. Delete connection

 3

 4

Rule 1
(R1)

 1

 2

 5

Rule 2
(R2)

SELF.activity < 0.5 3 2 E_INPUT.weight < 0.1 5 0 P_INPUT.type = SELF.type 5 0 ADD 0.1

1. Condition 2. Condition 3. Condition 4. Action

The Genome:

Rules:

• SELF: Neuron for which
connections are being
considered

• P_INPUT: Possible input

• E_INPUT: Existing input

T F

T T

+ - ? x y

+ - ? x y

P(x,y)

Q(x,y)

SHRUTI network:

P(a,b)

Observation:

P_INPUT

SELF

DEL

5. Action

Developing SHRUTI networks

Conditions:
1. If SELF.activity > 0.5, go to 3, else go to 2

2. If E_INPUT.weight < 0.1, go to 5, else end.

3. If P_INPUT.type = SELF.type, go to 4, else end.

Actions:
4. Add connection with weight 0.1

5. Delete connection

 3

 4

Rule 1
(R1)

 1

 2

 5

Rule 2
(R2)

SELF.activity < 0.5 3 2 E_INPUT.weight < 0.1 5 0 P_INPUT.type = SELF.type 5 0 ADD 0.1

1. Condition 2. Condition 3. Condition 4. Action

The Genome:

Rules:

• SELF: Neuron for which
connections are being
considered

• P_INPUT: Possible input

• E_INPUT: Existing input

T F

T T

+ - ? x y

+ - ? x y

P(x,y)

Q(x,y)

SHRUTI network:

P(a,b)

Observation:

E_INPUT

SELF

DEL

5. Action

Developing SHRUTI networks

Conditions:
1. If SELF.activity > 0.5, go to 3, else go to 2

2. If E_INPUT.weight < 0.1, go to 5, else end.

3. If P_INPUT.type = SELF.type, go to 4, else end.

Actions:
4. Add connection with weight 0.1

5. Delete connection

 3

 4

Rule 1
(R1)

 1

 2

 5

Rule 2
(R2)

SELF.activity < 0.5 3 2 E_INPUT.weight < 0.1 5 0 P_INPUT.type = SELF.type 5 0 ADD 0.1

1. Condition 2. Condition 3. Condition 4. Action

The Genome:

Rules:

• SELF: Neuron for which
connections are being
considered

• P_INPUT: Possible input

• E_INPUT: Existing input

T F

T T

+ - ? x y

+ - ? x y

P(x,y)

Q(x,y)

SHRUTI network:

P(a,b)

Observation:

P_INPUT

SELF

DEL

5. Action

Developing SHRUTI networks

Conditions:
1. If SELF.activity > 0.5, go to 3, else go to 2

2. If E_INPUT.weight < 0.1, go to 5, else end.

3. If P_INPUT.type = SELF.type, go to 4, else end.

Actions:
4. Add connection with weight 0.1

5. Delete connection

 3

 4

Rule 1
(R1)

 1

 2

 5

Rule 2
(R2)

SELF.activity < 0.5 3 2 E_INPUT.weight < 0.1 5 0 P_INPUT.type = SELF.type 5 0 ADD 0.1

1. Condition 2. Condition 3. Condition 4. Action

The Genome:

Rules:

• SELF: Neuron for which
connections are being
considered

• P_INPUT: Possible input

• E_INPUT: Existing input

T F

T T

+ - ? x y

+ - ? x y

P(x,y)

Q(x,y)

SHRUTI network:

P(a,b)

Observation:

P_INPUT

SELF

DEL

5. Action

Developing SHRUTI networks

Conditions:
1. If SELF.activity > 0.5, go to 3, else go to 2

2. If E_INPUT.weight < 0.1, go to 5, else end.

3. If P_INPUT.type = SELF.type, go to 4, else end.

Actions:
4. Add connection with weight 0.1

5. Delete connection

 3

 4

Rule 1
(R1)

 1

 2

 5

Rule 2
(R2)

SELF.activity < 0.5 3 2 E_INPUT.weight < 0.1 5 0 P_INPUT.type = SELF.type 5 0 ADD 0.1

1. Condition 2. Condition 3. Condition 4. Action

The Genome:

Rules:

• SELF: Neuron for which
connections are being
considered

• P_INPUT: Possible input

• E_INPUT: Existing input

T F

T T

+ - ? x y

+ - ? x y

P(x,y)

Q(x,y)

SHRUTI network:

P(a,b)

Observation:

P_INPUT

SELF

DEL

5. Action

Developing SHRUTI networks

Conditions:
1. If SELF.activity > 0.5, go to 3, else go to 2

2. If E_INPUT.weight < 0.1, go to 5, else end.

3. If P_INPUT.type = SELF.type, go to 4, else end.

Actions:
4. Add connection with weight 0.1

5. Delete connection

 3

 4

Rule 1
(R1)

 1

 2

 5

Rule 2
(R2)

SELF.activity < 0.5 3 2 E_INPUT.weight < 0.1 5 0 P_INPUT.type = SELF.type 5 0 ADD 0.1

1. Condition 2. Condition 3. Condition 4. Action

The Genome:

Rules:

• SELF: Neuron for which
connections are being
considered

• P_INPUT: Possible input

• E_INPUT: Existing input

T F

T T

+ - ? x y

+ - ? x y

P(x,y)

Q(x,y)

SHRUTI network:

P(a,b)

Observation:

P_INPUT

SELF

DEL

5. Action

Developing SHRUTI networks

Conditions:
1. If SELF.activity > 0.5, go to 3, else go to 2

2. If E_INPUT.weight < 0.1, go to 5, else end.

3. If P_INPUT.type = SELF.type, go to 4, else end.

Actions:
4. Add connection with weight 0.1

5. Delete connection

 3

 4

Rule 1
(R1)

 1

 2

 5

Rule 2
(R2)

SELF.activity < 0.5 3 2 E_INPUT.weight < 0.1 5 0 P_INPUT.type = SELF.type 5 0 ADD 0.1

1. Condition 2. Condition 3. Condition 4. Action

The Genome:

Rules:

• SELF: Neuron for which
connections are being
considered

• P_INPUT: Possible input

• E_INPUT: Existing input

T F

T T

+ - ? x y

+ - ? x y

P(x,y)

Q(x,y)

SHRUTI network:

P(a,b)

Observation:
SELF

DEL

5. Action

Developing SHRUTI networks

Conditions:
1. If SELF.activity > 0.5, go to 3, else go to 2

2. If E_INPUT.weight < 0.1, go to 5, else end.

 3. If P_INPUT.type = SELF.type, go to 4, else end.

Actions:
4. Add connection with weight 0.1

5. Delete connection

 3

 4

Rule 1
(R1)

 1

 2

 5

Rule 2
(R2)

SELF.activity < 0.5 3 2 E_INPUT.weight < 0.1 5 0 P_INPUT.type = SELF.type 5 0 ADD 0.1

1. Condition 2. Condition 3. Condition 4. Action

The Genome:

Rules:

• SELF: Neuron for which
connections are being
considered

• P_INPUT: Possible input

• E_INPUT: Existing input

T F

T T

+ - ? x y

+ - ? x y

P(x,y)

Q(x,y)

SHRUTI network:

P(a,b)

Observation:
SELF

DEL

5. Action

Developing SHRUTI networks

Conditions:
1. If SELF.activity > 0.5, go to 3, else go to 2

2. If E_INPUT.weight < 0.1, go to 5, else end.

 3. If P_INPUT.type = SELF.type, go to 4, else end.

Actions:
4. Add connection with weight 0.1

5. Delete connection

 3

 4

Rule 1
(R1)

 1

 2

 5

Rule 2
(R2)

SELF.activity < 0.5 3 2 E_INPUT.weight < 0.1 5 0 P_INPUT.type = SELF.type 5 0 ADD 0.1

1. Condition 2. Condition 3. Condition 4. Action

The Genome:

Rules:

• SELF: Neuron for which
connections are being
considered

• P_INPUT: Possible input

• E_INPUT: Existing input

T F

T T

+ - ? x y

+ - ? x y

P(x,y)

Q(x,y)

SHRUTI network:

P(a,b)

Observation:
SELF

DEL

5. Action

Developing SHRUTI networks

Conditions:
1. If SELF.activity > 0.5, go to 3, else go to 2

2. If E_INPUT.weight < 0.1, go to 5, else end.

 3. If P_INPUT.type = SELF.type, go to 4, else end.

Actions:
4. Add connection with weight 0.1

5. Delete connection

 3

 4

Rule 1
(R1)

 1

 2

 5

Rule 2
(R2)

SELF.activity < 0.5 3 2 E_INPUT.weight < 0.1 5 0 P_INPUT.type = SELF.type 5 0 ADD 0.1

1. Condition 2. Condition 3. Condition 4. Action

The Genome:

Rules:

• SELF: Neuron for which
connections are being
considered

• P_INPUT: Possible input

• E_INPUT: Existing input

T F

T T

+ - ? x y

+ - ? x y

P(x,y)

Q(x,y)

SHRUTI network:

P(a,b)

Observation:
SELF

DEL

5. Action

Developing SHRUTI networks

Conditions:
1. If SELF.activity > 0.5, go to 3, else go to 2

2. If E_INPUT.weight < 0.1, go to 5, else end.

 3. If P_INPUT.type = SELF.type, go to 4, else end.

Actions:
4. Add connection with weight 0.1

5. Delete connection

 3

 4

Rule 1
(R1)

 1

 2

 5

Rule 2
(R2)

SELF.activity < 0.5 3 2 E_INPUT.weight < 0.1 5 0 P_INPUT.type = SELF.type 5 0 ADD 0.1

1. Condition 2. Condition 3. Condition 4. Action

The Genome:

Rules:

• SELF: Neuron for which
connections are being
considered

• P_INPUT: Possible input

• E_INPUT: Existing input

T F

T T

+ - ? x y

+ - ? x y

P(x,y)

Q(x,y)

SHRUTI network:

Q(a,b)

Observation:

DEL

5. Action

Developing SHRUTI networks

Conditions:
1. If SELF.activity > 0.5, go to 3, else go to 2

2. If E_INPUT.weight < 0.1, go to 5, else end.

 3. If P_INPUT.type = SELF.type, go to 4, else end.

Actions:
4. Add connection with weight 0.1

5. Delete connection

 3

 4

Rule 1
(R1)

 1

 2

 5

Rule 2
(R2)

SELF.activity < 0.5 3 2 E_INPUT.weight < 0.1 5 0 P_INPUT.type = SELF.type 5 0 ADD 0.1

1. Condition 2. Condition 3. Condition 4. Action

The Genome:

Rules:

• SELF: Neuron for which
connections are being
considered

• P_INPUT: Possible input

• E_INPUT: Existing input

T F

T T

+ - ? x y

+ - ? x y

P(x,y)

Q(x,y)

SHRUTI network:

Q(a,b)

Observation:

DEL

5. Action

Developing SHRUTI networks

Conditions:
1. If SELF.activity > 0.5, go to 3, else go to 2

2. If E_INPUT.weight < 0.1, go to 5, else end.

 3. If P_INPUT.type = SELF.type, go to 4, else end.

Actions:
4. Add connection with weight 0.1

5. Delete connection

 3

 4

Rule 1
(R1)

 1

 2

 5

Rule 2
(R2)

SELF.activity < 0.5 3 2 E_INPUT.weight < 0.1 5 0 P_INPUT.type = SELF.type 5 0 ADD 0.1

1. Condition 2. Condition 3. Condition 4. Action

The Genome:

Rules:

• SELF: Neuron for which
connections are being
considered

• P_INPUT: Possible input

• E_INPUT: Existing input

T F

T T

+ - ? x y

+ - ? x y

P(x,y)

Q(x,y)

SHRUTI network:

Q(a,b)

Observation:

DEL

5. Action

Developing SHRUTI networks

Conditions:
1. If SELF.activity > 0.5, go to 3, else go to 2

2. If E_INPUT.weight < 0.1, go to 5, else end.

 3. If P_INPUT.type = SELF.type, go to 4, else end.

Actions:
4. Add connection with weight 0.1

5. Delete connection

 3

 4

Rule 1
(R1)

 1

 2

 5

Rule 2
(R2)

SELF.activity < 0.5 3 2 E_INPUT.weight < 0.1 5 0 P_INPUT.type = SELF.type 5 0 ADD 0.1 DEL

1. Condition 2. Condition 3. Condition 4. Action 5. Action

+ - ? x y

+ - ? x y

P(x,y)

Q(x,y)

The Genome:

Rules:

SHRUTI network:

• SELF: Neuron for which
connections are being
considered

• P_INPUT: Possible input

• E_INPUT: Existing input

T F

T T

Developing SHRUTI networks

Conditions:
1. If SELF.activity > 0.5, go to 3, else go to 2

2. If E_INPUT.weight < 0.1, go to 5, else end.

 3. If P_INPUT.type = SELF.type, go to 4, else end.

Actions:
4. Add connection with weight 0.1

5. Delete connection

 3

 4

Rule 1
(R1)

 1

 2

 5

Rule 2
(R2)

SELF.activity < 0.5 3 2 E_INPUT.weight < 0.1 5 0 P_INPUT.type = SELF.type 5 0 ADD 0.1

1. Condition 2. Condition 3. Condition 4. Action

+ - ? x y

+ - ? x y

P(x,y)

Q(x,y)

The Genome:

Rules:

SHRUTI network:

• SELF: Neuron for which
connections are being
considered

• P_INPUT: Possible input

• E_INPUT: Existing input

T F

T T

P(x,y) →Q(x,y)

DEL

5. Action

Number of connections

• Developed networks answered all test questions correctly in each case.

• Though size of genome is fixed, it can develop networks of different sizes.

Sequence Relations Predicates Connections Updates

1 2 3 22 139

2 3 4 64 719

3 4 5 86 1056

4 4 7 53 535

5 5 6 65 721

6 5 6 80 852

7 5 6 83 1064

8 6 7 80 1168

9 6 7 73 730

Evolving the SHRUTI genome

• The genome supports the
claim that the prerequisite
structure required for learning
relations can be realised
through a model of
development.

• To support this even further,
we want to show that this
genome can be found in a
evolutionary search.

• NSGA-II

• Population size: 100

• 500 generations

• 50 trials

• 12 conditions or actions per genome

• 90% crossover rate

• 10% mutation rate

Evaluating Error
• Each network was trained on a sequence of observations in the form of predicate instances.

• E.G. Sequence P(a,b), Q(a,b) supports the relation P(x,y) → Q(x,y)

• Networks are then presented with a set of training questions.

• E.G. Q(a,b) - “Is Q(a,b) true?”

• Answers take the form of positive and negative collector activations.

Positive
Collector (+)

Negative
Collector (-)

Interpretation

0 0 Unknown

1 0 True

0 1 False

1 1 Contradiction

• Error is then based on the number of questions answered incorrectly.

• Networks which always guess [0,0] (unknown) are penalised and score maximum error.

Objectives
• Objective 1: Area beneath error-time graph

• Algorithm converges towards genomes that
produce minimal error in short amount of time.

• Error based on number of 'True or False'
questions answered incorrectly. E.G. 'Is P(a,b)
True?'

• Error measured at intervals during development
to estimate area.

• Objective 2: Number of weight updates

• Minimising this reduces the workload of SHRUTI's learning algorithm.

• Also reduces the number of connections, since a greater number of connections results in
more weights to update during development.

Results – Training Data
• Points marked with a blue dot show networks which
yield zero-error.

• Zero-error networks could be found within the first
100 generations, but minimising the number of weight
updates took longer.

• 48/50 trials yielded a total of 224 zero-error
networks.

• In general, three groups of networks emerged in the
final populations:

• Zero-error networks

• Networks which always 'guess' the same
answer for different predicates

• Networks which did not guess at all

Results – Training Data
• First Group

• Zero-error networks

• Genome only formed connections between active neurons of
the same type.

• Second Group

• Networks which always 'guess' the same answer depending on
the predicate.

• Only formed connections between enablers and collectors,
answering questions without reference to predicate arguments.

• Therefore relatively small number of connections and weight
updates required, making members of this group difficult to
dominate.

• Third Group

• Maximum-error networks

• Questions always answered 'unknown'

• Possible with no connections, therefore also difficult to
dominate.

Question Expected Answer Given Answer

P(a,b) 1,0 (True) 1,0 (True)

P(c,d) 0,0 (Unknown) 1,0 (True)

Q(a,b) 0,1 (False) 0,1 (False)

Q(c,d) 0,0 (Unknown) 0,1 (False

R(a,b) 1,0 (True) 0,0 (Unknown)

R(c,d) 0,0 (Unknown) 0,0 (Unknown)

Genomes for first (left) and second (right) groups.

Example answering strategy for second group

Results – Test Questions

• The evolved genomes were presented
with a set of test questions.

• In general, most networks performed
as well on test questions as they did on
training questions.

• Similar pareto fronts obtained for all
trials.

Test data - Other event sequences
• Genomes from all trials were tested on different
event sequences and test questions
corresponding to the logic programs they support.

• In most cases, at least 90% of zero-error
genomes could produce zero-error networks for
the unseen data.

• The results show that the evolved SHRUTI
genomes adapt well to unseen data.

• This is because genomes evolve to represent a
generic relation between predicates, and not the
logic program as a whole.

• The structure is discovered once, encoded once,
and expressed multiple times.

Sequence Trials with zero-
error networks

Zero-error
networks

Original 48 224

1 48 218 (97%)

2 48 220 (98%)

3 25 62 (28%)

4 43 176 (78%)

5 48 200 (89%)

6 48 224 (100%)

7 48 222 (99%)

8 47 213 (95%)

Conclusions

• Artificial Development may help us in our search for neural models of
intelligence. The ability to reason is one important skill which such models should
exhibit.

• A step in this direction has been made by showing that a scalable genome for
developing connections between neurons in SHRUTI networks can be found
through evolution.

• Genomes are adaptable and scalable, owing to the fact that the genome evolves
such that it learns to represent a relation between the two predicates rather than
logic programs as a whole.

• This supports the idea that the pre-organisation required to learn SHRUTI
relations with minimum number of connections is biologically plausible through a
model of genetic development.

Future Work

• Genomes for developing other SHRUTI structures not yet covered
include conjunctive relations, facts and type hierarchies.

• Currently working with genome for relations and facts, but these require
much more complex representations, and attempts to find them in an
evolutionary search are as of yet unsuccessful.

• Discovery of alternatives to SHRUTI.

Thank you!

Joe Townsend, University of Exeter

jt231@ex.ac.uk

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

