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Abstract
We study linear autoencoder networks for struc-
tured inputs, such as sequences, trees. We show
that the problem of training an autoencoder has a
closed form solution which can be obtained via the
definition of linear dynamical systems modelling
the structural information present in the dataset of
structures. Relationship with principal directions is
discussed. We also briefly discuss how autoencoder
networks can be used in relation to classification
tasks.

1 Introduction
With the recent development of Deep Learning (e.g., [Hinton
and Salakhutdinov, 2006; Hinton et al., 2006; Bengio, 2009;
di Lena et al., 2012]), nonlinear autoencoder networks have
witnessed a resurge of attention as a tool for developing rich
internal representations of input data. In fact it seems more
and more evident that effective learning should be based on
relevant and robust internal representations developed in au-
tonomy by the learning system.

Since in many cases neural-symbolic integration involves
structured data, such as sequences, trees, and graphs, in this
paper we investigate on autoencoder networks for structured
data. Specifically, we discuss the most basic version of au-
toencoder networks, i.e. linear systems. We show that,
for linear systems, it is actually possible to devise a closed
form solution for learning which relates to Principal Compo-
nent Analysis of the extended vectorial representations of the
structured data. Principal Component Analysis (PCA) ([Jol-
liffe, 2002]) constitutes one of the oldest and best known tools
in Pattern Recognition and Machine Learning. It is a power-
ful technique for dimensionality reduction, while preserving
much of the relevant information conveyed by a set of vari-
ables. It is theoretically well founded and reduces to the so-
lution of an eigenvalue problem involving the covariance (or
correlation) matrix of the available data.

Exploiting the well known kernel trick, Kernel PCA
([Schölkopf et al., 1997]), which is a nonlinear form of PCA,
has been proposed. Through the kernel trick, it is possible to
implicitly project data into high-dimensional feature spaces.
PCA is then performed in feature space, discovering principal
directions that correspond to principal curves in the original

data space. By defining a kernel on structured data, such as
sequences, trees, and graphs, it is also possible to apply PCA
to application domains where it is natural to represent data in
a structured form; just to name a few, Chemistry, Bioinfor-
matics, and Natural Language Processing.

In this paper, we are interested in understanding how a
PCA-like tool can be extended to structured data without us-
ing an a priori defined kernel for structures, especially when
the information attached to each vertex of the structure is a
real-valued vector.

We show that linear autoencoder networks are actually
closely linked to PCA not only in the case of vectorial input
(see [Bourlard and Kamp, 1988; Baldi and Hornik, 1989]),
but also in the case of structured data modeled via a suit-
able linear dynamical system. From this perspective, per-
forming PCA of a set of structures is equivalent to discover
the most compact and informative dynamical system able to
map each structure into a state space vector representing as
much as possible of the information conveyed by the struc-
ture itself. The state space of such dynamical system would
then define a quite compact data dependent feature space, di-
rectly amenable to be used by any of the standard Machine
Learning tools for tasks such as classification, regression, and
clustering. This would constitute a complementary approach
to kernel-based methods for structured input (see [Gartner,
2003] for a survey), where the input structures are mapped by
an a priori defined nonlinear function into a very large feature
space. The definition of a data dependent and compact feature
space is reminiscent of the hidden activation space of Recur-
sive Neural Networks (e.g. see [Sperduti and Starita, 1997;
Frasconi et al., 1998; Hammer, 2000; Baldi and Pollastri,
2003; Micheli et al., 2001]), which have been successfully
applied to learning tasks in Chemistry and Bioinformatics.
Recursive Neural Networks, however, suffer the local min-
ima problem, and often are not so easy to train because of
the use of sigmoidal functions that introduce plateaus into the
objective function.

We show that it is actually possible to define PCA-like
representations for structured data via autoencoder networks,
mainly for sequences and trees, since graphs can be treated
indirectly as a sequence of nodes. We start by recalling PCA
for vectors (Section 2.1). Then, we introduce a linear dynam-
ical system as basic component of a linear autoencoder, and
then the main result used for the definition of PCA-like rep-



resentations for sequences (Section 2.2). The application of
the same ideas to trees is discussed in Section 2.3, where an
extended dynamical system is introduced. In Section 3 we
briefly discuss how autoencoders can be used for classifica-
tion tasks. Conclusions are drawn in Section 4.

Preliminary work described in this paper and results ob-
tained on empirical data have been presented in ([Sperduti,
2006; Micheli and Sperduti, 2007; Sperduti, 2007]).

2 Linear Autoencoder Networks and PCA for
Vectors and Structures

In the following we study the relationship between solutions
to linear autoencoder networks and the computation of PCA
for vectors and structured data. We briefly recall the standard
PCA with a perspective that will allow us to readily under-
stand the connection with solutions to linear autoencoder net-
works for sequences. The suggested approach is then further
extended to cover the direct treatment of trees.

2.1 Vectors
One of the aims of standard PCA ([Jolliffe, 2002]) is to reduce
the dimensionality of a data set, while preserving as much
as possible the information present in it. This is achieved
by looking for orthogonal directions of maximum variance
within the data set. The principal components are sorted ac-
cording to the amount of variance they explain, so that the
first few retain most of the variation present in all of the orig-
inal variables. It turns out that the qth principal component
is given by the projection of the data onto the eigenvector of
the (sample) covariance matrix C of the data corresponding
to the qth largest eigenvalue.

From a mathematical point of view, PCA can be under-
stood as given by an orthogonal linear transformation of the
given set of variables (i.e., the coordinates of the vectorial
space in which data is embedded):

yi = Axi

where xi ∈ Rk are the vectors belonging to the data set, and
A ∈ Rk×k is the orthogonal matrix whose qth row is the qth
eigenvector of the covariance matrix. Typically, larger vari-
ances are associated with the first p < k principal compo-
nents. Thus one can conclude that most relevant information
occur only in the first p dimensions. The process of retain-
ing only the first p principal components is known as dimen-
sional reduction. Given a fixed value for p, principal com-
ponents allow also to minimize the reconstruction error, i.e.
the square error of the difference between the original vector
xi and the vector obtained by projecting its principal compo-
nents yi back into the original space by the linear transforma-
tion A(p)Tyi:

A(p) = argmin
M∈Rp×k

∑
i

‖xi −MTMxi‖2

where the rows of A(p) ∈ Rp×k corresponds to the first
p eigenvectors of C. This can be shown by resorting to a

Rayleigh quotient. In fact, let

X =


xT
1

xT
2

xT
3
...

xT
n

 ,
then the direction of maximum variance can be computed as

w∗ = argmax
w

wTXTXw

wTw
= argmax

w

wTCw

wTw
.

By imposing with no loss in generality that ‖w‖ = 1, an
equivalent problem is

w∗ = arg max
‖w‖=1

wTCw.

This is a constrained optimization problem that can be solved
by optimizing the Lagrangian

L(w, λ) = wTCw − λ(wTw − 1).

By differentiating the Lagrangian with respect to w and
equating to zero leads to

Cw − λw = 0,

which corresponds to the following symmetric eigenvalue
problem

Cw = λw.

Thus the first principal direction corresponds to the eigen-
vector with maximum eigenvalue, while the other principal
directions correspond to the other eigenvectors (pairwise or-
thogonal by definition), sorted according to the corresponding
eigenvalues.

In [Bourlard and Kamp, 1988; Baldi and Hornik, 1989],
principal directions have been related to solutions obtained
by training linear autoencoder networks

oi = WhiddenWinputxi, i = 1, . . . , n, (1)

where Winput ∈ Rp×k, Whidden ∈ Rk×p, p � k, and the
network is trained so to get oi = xi, ∀i.

2.2 Sequences
When a temporal sequence x1,x2, . . . ,xt, . . . of input vec-
tors, where t is a discrete time index, is considered, the au-
toencoder defined in eq. (1) is extended by considering the
coupled linear dynamical systems

yt = Axt + Byt−1 (2)[
xt

yt−1

]
= Cyt, (3)

It should be noticed that eq. (2) extends the linear transfor-
mation defined in eq. (2.1) by introducing a memory term
involving the matrix B ∈ Rp×p. This approach has been
proposed, for example, in ([Voegtlin, 2005]) where an itera-
tive procedure, based on Oja’s rule, is presented. No proof of
convergence for the proposed procedure is given.



Here we give a formal treatment which allows us to reach
a sound solution to the above problem while returning, as a
by-product, a closed form solution to the problem of training
the autoencoder defined by eqs. (2) and (3).

The basic idea is to look for directions of high variance into
the state space of the dynamical linear system (2).

Let start by considering a single sequence
x1,x2, . . . ,xt, . . . ,xn and the state vectors of the cor-
responding induced state sequence collected as rows of a
matrix

Y =


yT
1

yT
2

yT
3
...

yT
n

 .
By using the initial condition y0 = 0 (the null vector), and
the dynamical linear system (2), we can rewrite the matrix as

Y =


(Ax1)

T

(Ax2 + BAx1))
T

(Ax3 + BAx2 + B2Ax1)
T

...
(Axn + · · ·+ Bn−2Ax2 + Bn−1Ax1)

T

 ,
which can be factorized as

Y =


xT
1 0 0 0 · · · 0

xT
2 xT

1 0 0 · · · 0
xT
3 xT

2 xT
1 0 · · · 0

...
...

...
...

...
...

xT
n xT

n−1 xT
n−2 · · · xT

2 xT
1


︸ ︷︷ ︸

Ξ


AT

ATBT

ATB2T

...
ATBn−1T


︸ ︷︷ ︸

Ω

where, given s = kn, Ξ ∈ Rn×s is a data matrix collecting
all the (inverted) input subsequences (including the whole se-
quence) as rows, and Ω is the parameter matrix of the dynam-
ical system.

Now, we are interested in using a state space of smallest di-
mension p, i.e. yt ∈ Rp, such that all information contained
in Ω is preserved. We start by factorizing Ξ using SVD, ob-
taining

Ξ = VΛUT

where V ∈ Rn×n is an unitary matrix, Λ ∈ Rn×s is a rectan-
gular diagonal matrix with nonnegative real numbers on the
diagonal with λ1,1 ≥ λ2,2 ≥ · · · ≥ λn,n (the singular val-
ues), and UT ∈ Rs×n is a unitary matrix.

It is important to notice that columns of UT which corre-
spond to nonzero singular values, apart some mathematical
technicalities, basically correspond to the principal directions
of data, i.e. PCA.

If the rank of Ξ is p, then only the first p elements of the
diagonal of Λ are not null, and the above decomposition can
be reduced to

Ξ = V(p)Λ(p)U(p)T (4)

where V(p) ∈ Rn×p, Λ(p) ∈ Rp×p, and U(p)T ∈ Rp×n.
Now we can observe that U(p)TU(p) = I (where I is

the identity matrix of dimension p), since by definition the
columns of U(p) are orthogonal, and by imposing Ω = U(p),
we can derive “optimal” matrices A ∈ Rp×k and B ∈ Rp×p

for our dynamical system, which will have corresponding
state space matrix

Y(p) = ΞΩ = ΞU(p) = V(p)Λ(p)U(p)TU(p) = V(p)Λ(p).

Thus, if we represent U(p) as composed of n submatrices
U

(p)
i , each of size k×p, the problem reduces to find matrices

A and B such that

Ω =


AT

ATBT

ATB2T

...
ATBn−1T

 =


U

(p)
1

U
(p)
2

U
(p)
3

...
U

(p)
n

 = U(p). (5)

In the following, we demonstrate that there exists a solution
to the above equation. We start by observing that Ξ owns a
special structure, i.e. given Ξ = [Ξ1 Ξ2 · · · Ξn], where
Ξi ∈ Rn×k, then for i = 1, . . . , n− 1

Ξi+1 = Rk,sΞi =

[
01×(n−1) 01×(s−n+1)

I(n−1)×(n−1) 0(n−1)×(s−n+1)

]
Ξi ,

and

Rk,sΞn = 0, i.e. the null matrix of size n× k.

Moreover, by eq. (4), we have

Ξi = V(p)Λ(p)U
(p)
i

T
, for i = 1, . . . , n.

Using the fact that V(p)TV(p) = I, and combining the above
equations, we get

U
(p)
i+t = U

(p)
i Qt, for i = 1, . . . , n−1, and t = 1, . . . , n−i

where Q = Λ(p)V(p)TRT
k,sV

(p)Λ(p)−1. Moreover, we have

that U
(p)
n Q = 0 since

U(p)
n Q = U(p)

n Λ(p)V(p)TRT
k,sV

(p)Λ(p)−1

= (Rk,sΞn)
TV(p)Λ(p)−1. (6)

Thus, eq. (5) is satisfied by A = U
(p)
1

T
and B = QT.

It is interesting to note that the original data Ξ can be re-
covered by computing

Y(p)U(p)T = V(p)Λ(p)U(p)T = Ξ,

which can be achieved by running the dynamical system[
xt

yt−1

]
=

[
AT

BT

]
yt

starting from yn, i.e.
[

AT

BT

]
is the matrix C defined in

eq. (3).



Finally, it is important to remark that the above construc-
tion works not only for a single sequence, but also for a set
of sequences of different length. For example, let consider
the two sequences (xa

1 ,x
a
2 ,x

a
3 ,x

a
4) and (xb

1,x
b
2). Then, we

have

Ξa =


xa
1
T 0 0 0

xa
2
T xa

1
T 0 0

xa
3
T xa

2
T xa

1
T 0

xa
4
T xa

3
T xa

2
T x1

aT


and

Ξb =

[
xb
1
T

0

xb
2
T

xb
1
T

]
which can be collected together into the matrix

Ξ =

[
Ξa

Ξb 02×2

]
and matrix

R =

[
Rk,4k

Rk,2k 02×2

]
to define matrix Q.

The following lemma shows the link between matrix Q and
the principal components corresponding to matrix U(p)

Lemma (Relationship with Principal Directions)

Q = U(p)TRT
k,sU

(p) =

n−1∑
i=1

U
(p)
i

T
U

(p)
i+1

Proof: By definition
∑n

i=1 U
(p)
i

T
U

(p)
i = I and

Q =

(
n∑

i=1

U
(p)
i

T
U

(p)
i

)
Q =

n∑
i=1

U
(p)
i

T (
U

(p)
i Q

)
=

n−1∑
i=1

U
(p)
i

T
U

(p)
i+1

where we have used U
(p)
i+1 = U

(p)
i Q and U

(p)
n Q = 0. �

As a final remark, it should be stressed that the above con-
struction only works if p is equal to the rank of Ξ. If p is
smaller, then there is no formal proof that the proposed solu-
tion is optimal, although empirical experimental results seem
to be quite good (see [Sperduti, 2006; Micheli and Sperduti,
2007; Sperduti, 2007]).

2.3 Trees
When considering trees, an extension of the approach used
for sequences can be used. First of all, let us illustrate what
happens for an example given by a complete binary tree.
Then, we will generalize the construction to (in)complete b-
ary trees. For b = 2, we consider the following linear dy-
namical system (the decoding is obtained by the transposed
dynamical system, as we have seen for sequences)

yu = Axu + Blychl[u] + Brychr[u] (7)

where u is a vertex of the tree, chl[u] is the left child of u,
chr[u] is the right child of u, Bl,Br ∈ Rp×p.

Let consider the following complete binary tree
T ≡ x7(x5(x1,x2),x6(x3,x4)),

where we have used parentheses to represent the tree struc-
ture. Then we can consider the corresponding induced state
elements collected as rows of a matrix

Y =


yT
1

yT
2

yT
3
...

yT
7

 .
By using the initial condition ynil = 0 (the null vector), and
the dynamical linear system (7), we have

Y =



(Ax1)
T

(Ax2)
T

(Ax3)
T

(Ax4)
T

(Ax5 + BlAx1 + BrAx2)
T

(Ax6 + BlAx3 + BrAx4)
T

(Ax7 + BlAx5 + BrAx6 + B2
l Ax1 + BlBrAx2

+BrBlAx3 + B2
rAx4)

T


,

which can be factorized as

Y =



xT
1 0 0 0 0 0 0

xT
2 0 0 0 0 0 0

xT
3 0 0 0 0 0 0

xT
4 0 0 0 0 0 0

xT
5 xT

1 xT
2 0 0 0 0

xT
6 xT

3 xT
4 0 0 0 0

xT
7 xT

5 xT
6 xT

1 xT
2 xT

3 xT
4


︸ ︷︷ ︸

Ξ



AT

ATBT
l

ATBT
r

ATB2
l
T

ATBT
r BT

l

ATBT
l BT

r

ATB2
r
T


︸ ︷︷ ︸

Ω

.

It is not difficult to recognize that each macro component of
Ω corresponds to a path into a generic binary tree: AT is
associated to the root, ATBT

l is associated to the left child of
the root, and so on. As for sequences, we have now to solve
the following matricial equation

Ω =



AT

ATBT
l

ATBT
r

ATB2
l
T

ATBT
r BT

l

ATBT
l BT

r

ATB2
r
T


=



U
(p)
1

U
(p)
2

U
(p)
3

U
(p)
4

U
(p)
5

U
(p)
6

U
(p)
7


= U?,

with respect to the three matrices A, Bl, and Br.
As for the case of sequences, we can observe that Ξ owns

a special structure, i.e. given Ξ = [Ξ1 Ξ2 · · · Ξ7] we can
state that matrix Ξleft = [Ξ2 Ξ4 Ξ5 07×4k] is equal to

Ξleft = Rk,leftΞ =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0

Ξ,



and matrix Ξright = [Ξ3 Ξ6 Ξ7 07×4k] is equal to

Ξright = Rk,rightΞ =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0

Ξ,

which combined with eq. (4) gives matrices

Qleft = Λ(p)V(p)TRT
k,leftV

(p)Λ(p)−1

and
Qright = Λ(p)V(p)TRT

k,rightV
(p)Λ(p)−1,

leading to the solution A = U
(p)
1

T
, Bl = QT

left, and
Br = QT

right.
Also in this case, we have push operators, i.e., Rk,left is a

push left operator, while Rk,right is a push right operator. In
the following, we describe how these push operators can be
defined in general for complete binary trees.

Each vertex u of the binary tree is associated to a binary
string id(u) obtained as follows: the binary string “1” is as-
sociated to the root of the tree. Any other vertex has asso-
ciated the string obtained by concatenating the string of its
parent with the string “0” if it is a left child, “1” otherwise.
Then, all the dimensions of the state space S are partitioned
in s/k groups of k dimensions. The label associated to vertex
v is stored into the j-th group, where j is the integer repre-
sented by the binary string id(u). E.g. the label of the root is
stored into group 1, since id(root) =“1”, the label of the ver-
tex which can be reached by the path ll starting from the root
is stored into group 4, since id(u) =“100”, while the label of
the vertex reachable through the path rlr is stored into group
13, since id(u) =“1101”. Notice that, if the input tree is not
complete, the components corresponding to missing vertexes
are set to be equal to 0.

Matrices Bl and Br are defined as follows. Both matrices
are composed of two types of blocks, i.e. Ik×k and 0k×k.
Matrix Bl has to implement a push left operator, i.e. the tree
T encoded by a vector yroot(T ) has to become the left child
of a new node u whose label is the current input xu. Thus
root(T ) has to become the left child of u and also all the other
vertexes in T have their position redefined accordingly. From
a mathematical point of view, the new position of any vertex
a in T is obtained by redefining id(a) as follows: i) the most
significative bit of id(a) is set to “0”, obtaining the string
id0(a); ii) the new string idnew(a) =“1”+id0(a) is defined,
where + is the string concatenation operator. If idnew(a)
represents a number greater than s/k then this means that the
vertex has been pushed outside the available memory, i.e. the
vertex a is lost. Consequently, groups which correspond to
lost vertexes have to be annihilated. Thus, Bl is composed of
(q+1)×(q+1) blocks, all of type 0k×k, except for the blocks
in row idnew(a) and column id(a), with idnew(a) ≤ s/k,
where a block Ik×k is placed. Matrix Br is defined similarly:
it has to implement a push right operator, i.e.: i) the most

significative bit of id(a) is set to “1”, obtaining the string
id1(a); ii) the new string idnew(a) =“1”+id1(a) is defined.

It should be noticed that the definition of the operators de-
scribed above is not dependent on the number of the pro-
cessed trees, but only depends on the size of the largest tree
(memory size).

Generalization of the above scheme for complete b-ary
trees is not difficult. The dynamical linear system becomes

yu = Axu +

b−1∑
c=0

Bcychc[u] (8)

where chc[u] is the c + 1-th child of u, and a matrix Bc is
defined for each child. The string associated to each vertex is
defined on the alphabet {“0”,“1”, . . . ,“b-1”}, since there are
b children. The symbol b− 1 is associated with the root and b
push operations have to be defined. The new string associated
to any vertex a in T , after a c-push operation, is obtained by
redefining id(a) as follows: i) the most significative symbol
of id(a) is set to c, obtaining the string idc(a); ii) the new
string idnew(a) =“b-1”+idc(a) is defined. E.g., if b = 5
and c =“3”, then i) the most significative symbol of id(a)
is set to “3”, obtaining the string id3(a); ii) the new string
idnew(a) =“b-1”+id3(a) is defined. Matrix Bc is defined
by placing blocks Ik×k in positions (idnew(a), id(a)) only if
idnew(a) ≤ s/k, where idnew(a) is interpreted as a number
represented in base b. Finally, the optimal solution for a state
space of dimension p is given by matrices

A = U
(p)
1

T
, Bc = Qpushc .

A problem in dealing with complete trees is that very soon
there is a combinatorial explosion of the number of paths to
consider, i.e. in order for the machine to deal with moderately
deep trees, a huge value for s needs to be used. In practical
applications, however, the observed trees tend to follow a spe-
cific generative model, and thus there may be many topolo-
gies which are never, or very seldomly, generated.

For this reason we suggest to use the following approach.
Given a set of trees T, the optimized graph GT ([Sperduti
and Starita, 1997]) is obtained by joining all the trees in such
a way that any (sub)tree in T is represented only once. The
optimized graph GT, which is a DAG, is then visited bottom-
up, generating for each visited vertex v the set of id strings
associated to the tree rooted in v, thus simulating all the dif-
ferent push operations which should be performed when pre-
senting the trees in T to the machine. Repeated id strings are
removed. The obtained set P is then used to define the state
space of the machine: each string is associated to one group
of k coordinates. In this way, only paths which appear in the
set T (including all subtrees) are represented, thus drastically
reducing the size of s, which will be equal to |P | × k.

3 Classification of Structures
In this section, we briefly discuss how an autoencoder net-
work for structures can be related to a linear dynamical sys-
tem for classification. For the sake of presentation we re-
strict our discussion to binary classification problems involv-
ing trees.



We are interested to understand how a linear dynamical
system of the form shown in eq. (8) can be used for classi-
fication. Specifically, we assume that the state yu, where u is
the root node of tree T , is used as input to a classifier, e.g. an
SVM (see [Cardin et al., 2009]). Let {(Ti, di)}ni=1 be a train-
ing set of trees Ti, each belonging to class di ∈ {+1,−1}.

Let r(Ti) be any vectorial explicit representation of Ti
compliant with the above dynamical system, i.e. the row of
Ξ corresponding to the state obtained after presenting all the
nodes of the tree to the above dynamical system. Let assume
that the vectorial training set {(r(Ti), di)}ni=1 is linearly sep-
arable and w∗ =

∑q
j=1 α

∗
ij

r(Tij ) be the optimal weight vec-
tor returned by an SVM, where α∗ij > 0 are the optimal dual
variables corresponding to support vectors r(Tij ).

We observe that, since w∗ only depends on support vec-
tors, then any linear dynamical system which only encodes
the subspace spanned by the corresponding trees Tij is able
to define an equivalent classifier. Specifically, let Tsup =
{Tij}

q
j=1 be the set of support trees and T⊥ the set of trees

that are not support trees, i.e. all the trees in the training set
are given by Tsup ∪ T⊥. Let Ξ(Tsup) be the data matrix
generated by all nodes in trees belonging to Tsup and Ξ(T⊥)
the corresponding matrix for T⊥. Notice that any r(Tij ) will
be one row of Ξ(Tsup), however Ξ(Tsup) will also con-
tain rows that correspond to subtrees belonging to any Tij .
We also notice that matrix Ξ(T⊥) contains useful informa-
tion for classification only with respect to the components of
its rows that belong to the subspace spanned by the rows of
Ξ(Tsup). We can compute this contribution by projecting
the rows of Ξ(T⊥) over the rows of Ξ(Tsup). Such projec-
tion is obtained by finding the matrix solving the following
optimization problem

argmin
M
‖MΞ(Tsup)−Ξ(T⊥)‖2.

The solution to the above problem is given by M =
Ξ(T⊥)Ξ(Tsup)

+, where Ξ(Tsup)
+ is the pseudo-inverse

of Ξ(Tsup) (easily obtainable by using its SVD de-
composition). We now compute the “optimal” dy-
namical system with matrices A∗, B∗c, for matrix[

Ξ(Tsup)
Ξ(T⊥)Ξ(Tsup)Ξ(Tsup)

+

]
. Let y∗root(Tij

) be the state

vectors of such system corresponding to the roots of sup-
port trees Tij . Then, the reduced weight vector w∗r =∑q

j=1 α
∗
ij

y∗root(Tij
) returns the same classification of w∗

over the extended representations r(Ti). The reason for that
can be understood by recalling that r(Tij ) = y∗root(Tij

)U
(p)T

and so r(Tij )r(Tij )
T = y∗root(Tij

)U
(p)TU(p)y∗Troot(Tij

) =

y∗root(Tij
)y
∗T
root(Tij

) (please, remember that we are manag-

ing row vectors, so r(Tij )r(Tij )
T is a dot product). More-

over, for trees that are not of support, only the projection
over the vectorial representation of the support trees matters,
which is exactly reconstructed by the dynamical system.

Of course, the above construction can also be used when
data is not linearly separable and a kernel is used. In this
case, the linear dynamical system is used to generate reduced

representations which are then used in substitution of the full
explicit representations used by the SVM.

4 Conclusion
In this paper, we have shown that solutions to linear autoen-
coder networks for structured data is closely related to prin-
cipal directions of explicit vectorial representations of struc-
tured data which are compliant to suitable linear dynamical
systems describing the structural information. Through this
approach, we showed it is possible to reach a theoretically
well founded solution for linear autoencoders. We briefly also
discussed how linear autoencoders can be used to define lin-
ear dynamical systems for classification.

Here we did not discuss that it is actually possible to com-
pute such solution when a kernel map is used in the label
space, although the computational burden can increase sig-
nificantly when the total number of components is larger than
the dimension of the label space times the depth of the mem-
ory used to represent structural information.

Experimental results are not discussed here, however in
other papers ([Sperduti, 2006; Micheli and Sperduti, 2007;
Sperduti, 2007]) experiments involving sequences, trees, and
graphs have confirmed the feasibility of the approach and the
effectiveness of the proposed methods for reducing the com-
putational burden. From the computational point of view,
further improvements, not explored in this paper, can be
obtained by considering the sparsity of the Ξ matrix, and
the adoption of more sophisticated numerical algorithms for
computing the SVD factorization.

More work is needed to precisely relate the proposed ap-
proach with KPCA using a kernel for structures. Also a
more convincing formulation for the processing of graphs is
needed. In fact, while the proposed formulation is fully sat-
isfactory for sequences and trees, it is not easy to directly
address graphs, mainly because of the presence of confluent
edges and cycles. It may also be interesting to investigate
if it is possible to extend the proposed approach to include
nonlinearities in analogy to the work proposed by Hinton &
Salakhutdinov for vectorial data ([Hinton et al., 2006]).
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