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Abstract
Research efforts in Neural-Symbolic Integration
and Lifelong Machine Learning have taken place
with limited interactions over the last 20 years.
These two areas of artificial intelligence share com-
mon ground and yet have much to learn from each
other. This paper provides background, particu-
larly on Lifelong Machine Learning, and presents
a number of common areas of investigation with
Neural-Symbolic Integration. It then invites re-
searchers in the two fields to better understand
some of the differences in motives and objectives
for the purpose of jointly advancing machine learn-
ing, knowledge representation and reasoning.

1 Introduction
Recent work on unsupervised learning using deep learning
architectures has given rise to new ideas on how knowledge
of the world is learned, consolidated, and then used for future
learning and reasoning [Bengio, 2009; Le et al., 2012]. This
is bringing together research in the areas of machine learn-
ing and knowledge representation that have traditionally been
pursued separately. Specifically, research efforts in Neural-
Symbolic Integration [Garcez et al., 2009; Bader and Hitzler,
2005] and Lifelong Machine Learning [Silver et al., 2013]
have taken place with only a few points of interaction over the
last 20 years. This paper presents several areas of common
ground for these areas where joint work has taken place and
further collaboration is possible. The paper also points out
fundamental differences in the motives and objectives of NSI
versus LML that need to be understood by researchers as we
move forward. In particular, we propose that joint research
has the potential to make serious advances on a significant
problem in artificial intelligence - the learning of common
background knowledge that can be used for future learning
and reasoning.

2 Background
2.1 Neural-Symbolic Integration
Neural-symbolic integration, or NSI, considers hybrid sys-
tems that integrate neural networks and symbolic logic. The
goal of NSI is to take advantage of the best of symbolic

and connectionist paradigms of artificial intelligence for both
learning and reasoning [Garcez et al., 2002; Garcez and Gab-
bay, 2004].

NSI seeks to make use of the learning capacities of neural
network models and the reasoning capacities of logic [Garcez
et al., 2014]. In a NSI system, neural networks provide
the machinery for parallel computation and robust learning,
while symbolic logic provides knowledge representation and
reasoning. The retention of symbolic knowledge of learned
models can be used for transfer learning, explanation of the
models to humans, and use of the knowledge by other sys-
tems. Neural-symbolic systems have application in knowl-
edge acquisition where a system learns a complex model and
then needs to reason about what has been learned in order to
respond to a new situation.

NSI has at least three major areas of investigation. First
there is the use of connectionist systems for symbolic knowl-
edge representation, reasoning and learning. These sys-
tems include comparisons with purely-symbolic and purely-
connectionist models, and the representation of relational,
first-order and modal logics for higher-order reasoning
[Garcez et al., 2014]. A second area of research is the extrac-
tion of high-level concepts and knowledge from complex net-
works. The focus here is on efficient and effective knowledge
extraction from very large networks for the purpose model
comprehension, validation, maintenance and transfer learn-
ing. The third area of investigation is the design and develop-
ment of applications in areas such as vision, robotics, intelli-
gent agents, and simulation.

2.2 Lifelong Machine Learning
Lifelong Machine Learning, or LML, is concerned with the
persistent and cumulative nature of learning [Thrun, 1996b].
LML considers systems that can learn many tasks over a life-
time from one or more domains. An LML system must effi-
ciently and effectively retain the knowledge it has learned and
transfer that knowledge to more efficiently and effectively
learn new tasks through the transfer of knowledge [Silver et
al., 2013]. The following sections provide an overview of
prior LML research in all areas of machine learning - super-
vised, unsupervised and reinforcement learning.

Supervised Learning
As early as the mid 1980s Michalski and Solomonoff had the-
ories on constructive inductive learning [Michalski, 1993]



and incremental learning [Solomonoff, 1989]. In the mid
1990s, Thrun and Mitchell worked on explanation-based
neural networks [Thrun, 1996a] and applied EBNN transfer
learning to autonomous robot learning when a multitude of
control learning tasks are encountered over an extended pe-
riod of time [Thrun and O’Sullivan, 1995].

Since 1995, Silver et al. have proposed variants of se-
quential learning and consolidation systems using standard
back-propagation neural networks [Silver and Poirier, 2004;
Silver et al., 2008]. A method called task rehearsal is an
essential part of these systems. After a task has been suc-
cessfully learned, its hypothesis representation is saved. The
saved hypothesis can be used to generate virtual training ex-
amples so as to rehearse the prior task when learning a new
task. Knowledge is transferred to the new task through the
rehearsal of previously learned tasks within the shared repre-
sentation of the neural network. Similarly, the knowledge of
a new task can be consolidated into a large domain knowl-
edge network without loss of existing task knowledge by us-
ing task rehearsal to maintain the functional accuracy of the
prior tasks while the representation is modified to accommo-
date the new task.

In the late 1990s, Rivest and Schultz proposed knowledge-
based cascade-correlation neural networks [Shultz and
Rivest, 2001]. The method extends the original cascade-
correlation approach, by selecting previously learned sub-
networks as well as simple hidden units. In this way the sys-
tem is able to use past learning to bias new learning.

Unsupervised Learning

Transfer in unsupervsied learning is almost as old as that of
supervised learning. In the mid 1980s, Carpenter and Gross-
berg proposed ART (Adaptive Resonance Theory) neural net-
works to overcome the stability-plasticity problem of forget-
ting previous learned data concepts [Grossberg, 1987].

Raina et al. proposed the Self-taught Learning method to
build high-level features using unlabeled data for a set of
tasks [Raina et al., 2007]. The authors used the features to
form a succinct input representation for problems such as im-
age and webpage classification.

Recent research into deep learning architectures of neural
networks can be connected to LML [Bengio, 2009]. Lay-
ered neural networks of unsupervised Restricted Boltzman
Machine auto-encoders have been shown to efficiently de-
velop hierarchies of features that capture statistical regular-
ities in their respective inputs. When used to learn a variety
of class categories, these networks develop layers of common
features similar to that seen in the visual cortex of humans.
Le et al. have used deep learning methods to build high-level
features for large-scale applications by scaling up the dataset,
the model and the computational resources [Le et al., 2012].
By using millions of high resolution images and very large
neural networks, their system effectively discover high-level
concepts like the presence of a cat’s face in an image. Ex-
perimental results show that their network can use its learned
features to achieve a significant improvement in image clas-
sification performance over state-of-the-art methods.

Reinforcement Learning
Several reinforcement learning researchers have considered
LML systems. In 1997, Ring proposed a lifelong learning
approach called continual learning that builds more compli-
cated skills on top of those already developed both incremen-
tally and hierarchically [Ring, 1997].

Tanaka and Yamamura proposed a lifelong reinforcement
learning method for autonomous-robots by treating multi-
ple environments as multiple-tasks [Tanaka and Yamamura,
1999].

Sutton et al. suggest that learning should continue during
an agent’s operations since the environment may change mak-
ing prior learning insufficient [Sutton et al., 2007]. An agent
is proposed that adapts to different local environments when
encountering different parts of its world over an extended pe-
riod of time.

Moving Beyond Learning Algorithms
Many machine learning researchers are calling for a move
beyond the development of inductive learning algorithms and
onto the design of systems that learn, retain and use knowl-
edge over a lifetime. In [Silver et al., 2013] we cite the fol-
lowing reasons for a call for wider research into LML sys-
tems.

Selective Inductive Bias is Essential to Learning. The con-
straint on a learning system’s hypothesis space, beyond the
criterion of consistency with the training examples, is called
inductive bias [Mitchell, 1980]. Utgoff wrote in 1983 about
the importance of inductive bias to concept learning from
practical sets of training examples and the need for learning
systems to select bias [Utgoff, 1983]. The AI community has
come to accept the futility of searching for a universal ma-
chine learning algorithm [Wolpert, 1996]. LML systems that
retain and selectively use prior knowledge as a source of in-
ductive bias promotes this perspective.

Theoretical Advances in ML and KR. Thrun proposed “The
acquisition, representation and transfer of domain knowledge
are the key scientific concerns that arise in lifelong learn-
ing” [Thrun, 1997]. Knowledge representation will play an
important role in the development of LML systems. More
specifically, the interaction between knowledge retention and
knowledge transfer will be key to the design of intelligent
agents that learn many things over an extended period.

Practical Agents/Robots Require LML. Advances in au-
tonomous robotics and intelligent agents that run on the
web or in mobile devices present opportunities for employ-
ing LML systems. Robots such as those that go into space
or travel under the sea must learn to recognize objects and
make decisions over extended periods of time and varied
environmental circumstances. The ability to retain and use
learned knowledge is very attractive to the researchers design-
ing these systems. Similarly, software agents on the web or
in our mobile phones would benefit from the ability to learn
more quickly and more accurately as they are challenged to
learn new but related tasks from small numbers of examples.

Increasing Capacity of Computers. Advances in modern
computers provide the computational power for implement-
ing and testing LML systems. The number of transistors that
can be placed cheaply on an integrated circuit has doubled



Figure 1: An integrated framework for Neural-Symbolic Integration and Lifelong Machine Learning.

approximately every two years since 1970. This trend is ex-
pected to continue into the foreseeable future, as computing
systems increasingly use multiple processing cores. We are
now at a point where an LML system focused on a con-
strained domain of tasks (e.g. product recommendation) is
computationally tractable in terms of both computer memory
and processing time [Le et al., 2012].

3 Common Ground
Figure 1 is based on a diagram found in [Bader and Hit-
zler, 2005]. The modifications show how the NSI framework
can integrate nicely with the LML framework presented in
[Silver et al., 2013]. The integrated framework is meant to
encompass the various methods of machine learning (super-
vised, unsupervised, or reinforcement) and the various sym-
bolic systems. Expert knowledge can be provided by the
user to the symbolic system where it is retained and/or con-
solidated with existing knowledge. This store of common
background knowledge can be used by the inductive learn-
ing system as a source of knowledge transfer, or inductive
bias. This bias can come in representational form, such as
an initial set of neural network weights from which to start
learning, or in functional form, such as a set of examples for
a secondary task for multiple task learning [Shavlik, 1992;
Silver and Mercer, 2002]. The inductive learning system de-
velops a hypothesis, or model, using the transferred knowl-
edge and training examples provided by the user. The re-
sult is a more accurate model developed in a shorter period
of time. The knowledge learned in these models can be ex-
tracted back to the symbolic system and retained (or consoli-
dated) for symbolic reasoning, used by another system, or for
explanation to the user.

The following sections discuss areas of common ground
shared by NSI and LML research, of which there has already
been some joint work.

3.1 Choice of Machine Learning to Use
An open question for both NSI and LML is which approach
to machine learning or combination of approaches works

best in the context of knowledge extraction and symbolic
reasoning. Supervised learning continues to dominate NSI
research [Bader and Hitzler, 2005], with some work being
done using reinforcement and unsupervised learning includ-
ing the extraction of symbolic logic from deep believe net-
works [Tran and Garcez, 2012]. Supervised learning has tra-
ditionally dominated LML, but over the last five years un-
supervised learning has received a considerable amount of
attention. For example, recent work has shown the benefit
of unsupervised training using many unlabelled examples to
generate new encodings (features) of the examples for use
in supervised learning [Bengio, 2009]. Others feel that rein-
forcement learning is the only true method of developing pre-
dictive models [Sutton et al., 2007]. The choice of machine
learning algorithm and representation will dramatically affect
the structure and function of NSI and LML systems. Combi-
nations of approaches may be helpful for learning individual
tasks but will prove challenging for knowledge consolidation
and aspects of NSI.

3.2 Training Examples versus Prior Knowledge
Both NSI and LML systems must weigh the relevance and
accuracy of retained knowledge along-side the information
resident in the available training examples for a new task. An
estimate of the sample complexity of the new task will play
a role here. The relative accuracy level of prior knowledge
must also be considered. Theories of how to selectively trans-
fer common knowledge in combination with existing training
examples is of significant value to NSI and LML research.

3.3 Effective and Efficient Knowledge Retention
Mechanisms that can effectively and efficiently retain knowl-
edge over time will suggest new approaches to common
knowledge representation. In particular, methods of integrat-
ing new knowledge into existing knowledge are of value to re-
searchers in NSI and LML [Shavlik, 1992; Silver and Poirier,
2004]. Efficient long-term retention of symbolic or learned
knowledge should cause no loss of prior task knowledge and
increase the accuracy of such knowledge if the new task be-



ing retained is related. Furthermore, the knowledge represen-
tation approach should allow the NSI or LML system to effi-
ciently select the most effective prior knowledge for transfer
during new learning.

In general, research in NSI and LML will see theories of
transfer learning and knowledge representation influence and
affect each other. A combined research agenda has the po-
tential to make serious advances on a significant AI problem
- the learning of common background knowledge that can be
used for future learning, reasoning and planning. The work at
Carnegie Mellon University on NELL is an early example of
such research [Carlson et al., 2010].

3.4 Effective and Efficient Knowledge Transfer

The search for transfer learning methods that are able to de-
velop accurate (effective) hypotheses rapidly (efficient) is a
challenging problem for both LML and NSI. Transfer learn-
ing should produce a hypothesis for a new task that meets or
exceeds the generalization performance of a hypothesis de-
veloped from only the training examples. There is evidence
that functional transfer (e.g. using secondary task examples
and multiple task learning) surpasses that of representation
transfer in its ability to produce more accurate hypotheses
[Caruana, 1997; Silver and Poirier, 2004]. Conversely, re-
search has shown that a representational form of knowledge
transfer (initializing a neural network to the weights of a re-
lated task) is typically more efficient than a functional form
but it rarely results in improved model effectiveness [Silver
and Poirier, 2004].

3.5 Scalability

Scalability is often the most difficult and important challenges
for artificial intelligent systems. For NSI systems the extrac-
tion of symbolic knowledge is normally demanding in terms
of time complexity. In LML systems the processes of reten-
tion and transfer adds time and space complexity to the chal-
lenge of learning. A NSI or LML system must be capable of
scaling up to large numbers of inputs, outputs, training exam-
ples and learning tasks. Preferably, the space and time com-
plexity of a system grows linearly in all of these factors. The
move to Big Data and commercial data analytics is applying
pressure on artificial intelligence approaches such as NSI and
LML.

3.6 Heterogenous Domains of Tasks

Although, much of NSI and LML research has focused on
retention and transfer within a single domain of tasks, an im-
portant area of research will be the development of systems
that work across heterogenous domains [Yang et al., 2009].
In heterogeneous transfer learning, the key idea is to lever-
age the feature correspondence across heterogenous domains
(such as images and tags; music and lyrics) to build an ef-
fective feature mapping for transferring knowledge. Having
knowledge in symbolic form would provide a number of new
avenues to pursue in terms of knowledge adaptation prior to
transfer from one problem domain to another.

3.7 Acquisition and Use of Meta-knowledge
Both NSI and LML systems need to collect and retain meta-
knowledge of their task domains. For example, it may be
critical for a NSI system to retain knowledge of the relation-
ship or relatedness between learned tasks and an LML sys-
tem may need to save the range and resolution of its input
attributes [Silver et al., 2008].

3.8 Shared Application Domains
Software agents and robots have provided useful test plat-
forms for empirical studies of NSI and LML systems [Thrun,
1996a]. Agents and robots will naturally need to learn new
but related tasks. This will provide opportunities to try differ-
ent methods of retaining and consolidating task knowledge.
The agent’s fixed input and output domains provide an envi-
ronment to test the impact of curriculum and the practice of
tasks in a controlled manner. NSI and LML can also be used
to overcome the cold-start problem exhibited by personal
agents that employ user modeling [Lashkari et al., 1994]. Re-
tained knowledge can be used to boot-strap a new user model
by transferring knowledge from a related user model.

4 Differences in NSI and LML Objectives
The following are some of the fundamental differences that
NSI and LML researchers may have in their motives and
objectives. These need to be appreciated by both research
groups as they move to work together.

4.1 Uses of Retained Common Knowledge
LML systems focus on the use of learned knowledge for de-
ployment in software systems or transfer during future learn-
ing. There is not as much consideration given to the trans-
parency of learned knowledge, its use for explanation, or re-
finement of symbolic knowledge. In NSI systems the refine-
ment and improvement of knowledge during learning is very
important. Similarly, the ability to extract symbolic logic in a
human readable form is important.

4.2 Retention versus Consolidation
LML researchers have started to consider the structure of re-
tained knowledge for a lifelong learning system. Knowledge
retention is necessary, but it may not be sufficient. In [Silver
and Poirier, 2004] we propose that domain knowledge must
be integrated for the purposes of efficient and effective reten-
tion and for more efficient and effective transfer during future
learning. The process of integration we define as consoli-
dation. The challenge for a LML system is consolidating the
knowledge of a new task while retaining and possibly improv-
ing knowledge of prior tasks. An interesting aspect of this
research is overcoming the stability-plasticity problem. The
stability-plasticity problem refers to the challenge of adding
new information to a system without the loss of prior infor-
mation [Grossberg, 1987].

Traditional NSI systems tend to focus on methods of re-
taining symbolic representations of learned knowledge. Con-
solidation of prior knowledge with new knowledge is not
often discussed. A recent survey by Lamb points out that
connectionist methods of representing symbolic concepts



is destroying NSI myths that have been around for some
time [Lamb, 2008]. This may provide new ground for discov-
ery of methods of consolidating knowledge in NSI systems.

4.3 Curriculum versus Expert Knowledge
An area where NSI and LML research differs is the use of
expert knowledge. NSI researchers pride themselves on the
ability to prime their learning systems with knowledge pro-
vided by an expert user. Such knowledge can be used as a
source of inductive bias that leverages the available training
examples. In contrast, most LML researchers pride them-
selves on designing self-taught leaners, and investigating cur-
riculum and training sequences that are beneficial for learn-
ing a collection of increasingly complex tasks from as little
knowledge as possible.

4.4 Practicing a Task
LML considers systems that may practice one or more tasks
over a lifetime. The expectation is that the accuracy of the
models of these tasks, residing in common knowledge, in-
creases over time. This is closely related to the idea of knowl-
edge consolidation versus simple retention. A computational
theory of how best to practice tasks is important to artificial
intelligence, as well as psychology and education. To the best
of our knowledge, this is not an area that has been studied by
NSI researchers, but their differing perspectives may lead to
novel approaches.

4.5 Reasoning versus Learning
NSI systems are able to learn new knowledge, retain it in
symbolic form, and then reason with the symbolic representa-
tion of the knowledge. They also consider the use of symbolic
knowledge for transfer learning. LML systems tend to focus
exclusively on knowledge retention for the purposes of trans-
fer learning. LML researchers could benefit from a better
understanding of the constraints placed on a learning system
when the knowledge acquired must be amenable to reason-
ing. These constraints can be consider additional inductive
biases that may be informative with respect to representation
and search when learning.

5 Conclusion
In this paper we have proposed that research in Neural-
Symbolic Integration and Lifelong Machine Learning share
common ground that can be further exploited for the advance-
ment of artificial intelligence. We have also pointed out sev-
eral differences in NSI and LML research motives and objec-
tives for further discussion by the community. We encourage
researchers to explore these differences as interesting areas
for making new discoveries in machine learning, knowledge
representation and reasoning. In particular, we foresee that
joint research has the potential to make serious advances in
the areas of learning and use of common background knowl-
edge that is so important for all areas of artificial intelligence.

A Dagstuhl seminar on Neural-Symbolic Learning and
Reasoning is planned for September, 2014 [Garcez et al.,
2014]. The goal of the seminar is to build bridges between
symbolic and sub-symbolic reasoning and learning represen-
tations using computer vision as a catalyst application. We

see this as an opportunity for a number of artificial intel-
ligence researchers to consider the links between LML and
NSI.
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