
Combining Runtime Verification and Property Adaptation
through Neural-Symbolic Integration

Alan Perotti
University of Turin

perotti@di.unito.it

Guido Boella
University of Turin

boella@di.unito.it

Artur d’Avila Garcez
City University London

aag@soi.city.ac.uk

Abstract
We propose a framework for combining runtime
verification and learning in connectionist models.
This framework is expected to offer an improved
efficiency of the verification process through
parallel computation, and a new mechanism of
compliance with soft-constraints through learning
(adaptation). The goal of business process
adaptation is to discover, monitor and improve real
processes by extracting knowledge from real-time
event logs readily available in today’s information
systems. Within this wider framework, we have
developed a run-time verification system for linear
temporal logic, called RuleRunner, which we have
designed explicitly with the goal of translating
into a neural network for parallel computation
and learning. In this paper, using results from
neural-symbolic integration, we introduce the
translation algorithm that enables the encoding
of any RuleRunner specifications into standard
CILP recurrent neural networks. The obtained
network is shown to converge to the evaluation
status of RuleRunner for each cell of the trace.
Initial experimental results, also reported in this
paper, indicate that the sparse version of the
network representation scales better than the
symbolic implementation of RuleRunner. The
resulting system is a neural network capable
of efficient runtime verification and offering
well-known learning capabilities, which are being
investigated. The framework will be applied to
the adaptation of business processes capable of
tolerating soft-violations occurring in real practice.

1 Introduction
Existing runtime verification systems are almost always built
on the assumption that the specifications they are going to
verify are fixed. This assumption is increasingly challenged
in domains and tasks like the verification of compliance of
business processes. In particular, it is relevant to distinguish
two kind of violations: hard and soft. Hard violations match
the classical definition of faults, i.e., errors that determine
an unacceptable behaviour from the monitored system. Soft

violations, on the other hand, are discrepancies between
high-level directives and real implementation.

For example, in a bank, the MIFID regulation prescribes
that before signing, the customer of a financial product should
be informed adequately. This is a hard constraint which
should not be violated. In contrast, a constraint coming from
internal regulations, such as that some document must be sent
in paper format rather than scanned, can be violated without
major problems, if the scanned version is still compliant
with laws. Thus, if a branch is considered successful (and
is compliant with hard constraits) by substituting paper for
scanned versions of a given document then the original
specification may need to be revised.

Therefore, the problem of runtime verification must
overcome the classical fault-detection schema, becoming a
more flexible, fine-grained approach able to detect and report
the hard violations, but also to integrate the soft violations
in the encoded formal specification. A sketch of the desired
system is shown in Figure 1.

MDesired
Property

System A
(traces)

C?M'

System B
(traces)

Compliance?Compliance?

Actual
Property

Encoded
Monitor

Adapted
Monitor

(2)

(3)

(4)

(5)(1)

Figure 1: Sketch of the desired verification system

In this vision, the verification system should:

1. Encode the specified properties, for example in a
formalism like LTL [Pnueli, 1977], and take as input
traces from the observed system A.

2. Verify the compliance of system A’s traces w.r.t
the encoded property description, checking whether
unacceptable normative violations occur.

3. If A exhibits only soft violations and its performance
is better than other systems, learn its behaviour by
observing it, merging A’s ideal description and its actual
behaviour in a new monitor.



4. Use the newly obtained monitor to verify the compliance
of a second system, B. Intuitively, the idea is to
verify how affine is the organisation of A and B,
both concerning the normative directives and the actual
process management.

5. Extract, from the adapted monitor, a new specification
of the actual process management activity in A where
the properties are revised according to the traces of A.

In this paper, we propose to use a neural network as
the encoded monitor of Figure 1, focusing on the first two
items: encoding and reasoning. We describe our rule-based
runtime verification system, RuleRunner, and we introduce
an algorithm to encode it in a recurrent neural network; the
resulting system is a neural network capable of efficient
runtime verification. We implemented all components and
we obtained encouraging preliminary results in terms of
performance. Furthermore, our system offers well-known
learning capabilities, which are being investigated.

The paper is structured as follows: Section 2 introduces
related work, Section 3 describes the RuleRunner system.
Section 4 describes the neural encoding of a RuleRunner
system. Section 5 discusses implementation and some
performance results of the prototype, Section 6 ends the paper
with conclusions and future work.

2 Background
2.1 Business Process Management
The IEEE Task Force on Process Mining aims to promote
the topic of process mining. In the context of this task force,
a group of more than 75 people involving more than 50
organisations created the Process Mining Manifesto. By
defining a set of guiding principles and listing important
challenges, this manifesto hopes to serve as a guide
for software developers, scientists, consultants, business
managers, and end-users. The goal is to discover, monitor
and improve real processes (i.e., not assumed processes)
by extracting knowledge from event logs readily available
in today’s (information) systems. Therefore, process
mining systems aim at closing the gap between the huge (and
growing) amount of stored data about processes and activities
and the need for making the business process management
flexible and competitive for ever-evolving contexts.

The Business Process Management provides an application
domain for our framework: when it comes to big companies
(such as a bank), in some of their branches the task execution
often differs from the rigid protocol enforcement, due to
obstacles (from broken printers to strikes) or by adaptations
to specific needs (dynamic resources reallocation): these
are examples of soft violations. On the other hand, law
infringements concerning security and privacy issues are
hard violations. For instance, having the customer of a
financial product sign a contract without being adequately
informed is a (hard) violation of the MIFID regulation1.

1Markets in Financial Instruments Directive 2004/39/EC (link)

Thus, if a branch considered successful and compliant
with hard constraints, substituted paper versions of a
given documents by scanned ones despite the original
specifications, such specifications may be revised. The
source of the modification should be the traces of the activity
of the successful branch, which can be fed as input to a
machine learning system.

2.2 Runtime Verification
Runtime verification (RV) of a given correctness property
φ (often formulated in linear temporal logic LTL [Pnueli,
1977]) aims at determining the semantics of φ while
executing the system under scrutiny; a monitor is defined as
a device that reads a finite trace and yields a certain verdict
[Leucker and Schallhart, 2009]. A trace is a sequence of
cells, which in turn are lists of observations occurring in
a given discrete span of time. Runtime verification may
work on finite (terminated) traces, finite but continuously
expanding traces, or on prefixes of infinite traces. A monitor
may control the current execution of a system (online) or
analyse a recorded set of finite executions (offline). There
are many semantics for finite traces: FLTL [Lichtenstein
et al., 1985], RVLTL [Bauer et al., 2007], LTL3 [Bauer
et al., 2006], LTL [Eisner et al., 2003] just to name some.
Since LTL semantics is based on infinite behaviours, these
semantics aim to close the gap between properties specifying
infinite behaviours and finite traces. There exist several
RV systems [Leucker and Schallhart, 2009], and they can
be clustered in three main approaches, based respectively
on rewriting, automata and rules. In this paper, we focus
on rule-based system, due to their similarity with neural
networks.

2.3 Neural-Symbolic Integration
The main purpose of a neural-symbolic system is to
bring together the connectionist and symbolic approaches
exploiting the strengths of both paradigms and, hopefully,
avoiding their drawbacks. In [Towell and Shavlik, 1994],
Towell and Shavlik presented the influential neural-symbolic
system KBANN (Knowledge-Based Artificial Neural
Network), a system for rule insertion, refinement and
extraction from feedforward neural networks. KBANN
served as inspiration for the construction of the Connectionist
Inductive Learning and Logic Programming (CILP) system
[d’Avila Garcez and Zaverucha, 1999]. CILP builds upon
KBANN and [Hoelldobler and Kalinke, 1994] to provide
a sound theoretical foundation for reasoning in artificial
neural networks with learning capabilities. The general
framework of a neural symbolic system is composed of three
main phases: encoding symbolic knowledge in a neural
network, performing theory revision (by means of some
learning algorithm) in the network, and extracting a revised
knowledge from the trained network. In particular, rules
are mapped onto hidden neurons, the preconditions of rules
onto input neurons and the conclusion of the rules onto
output neurons. The weighs are then adjusted to express the

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:02004L0039-20060428:EN:NOT


dependence among all these elements [Garcez et al., 2002].

3 RuleRunner
RuleRunner is a rule-based online monitor observing finite
but expanding traces and returning an FLTL verdict. As
it scans the trace, RuleRunner mantains a state composed
of rule names (for reactivating the rules), observations and
formulae evaluations.
Given a finite set of observations O and a LTL formula
φ over (a subset of) O, RuleRunner has a state composed
of observations (o ∈ O), rule names (R[φ]s) and truth
evaluations ([φ]V ); V ∈ {T, F, ?} is a truth value and
s, called suffix, is used to identify formulae. Due to
the lack of space, we will omit the technical details of
RuleRunner, [Perotti, 2013] focusing on how the monitoring
task is performed and how the rules are structured: this will be
relevant in the next subsection. The state evolves according to
rules: RuleRunner is composed of evaluation and reactivation
rules. Evaluation rules are shaped like

R[φ], [ψ1]V, . . . , [ψn]V,→ [φ]V

and, intuitively, their role is to compute the truth value of
a formula φ under verification, given the truth values of its
direct subformulae ψi. Reactivation rules are shaped like

[φ]?→ R[φ], R[ψ1], . . . , R[ψn]

and, if one formula is evaluated to undecided, that formula
(together with its subformulae) are scheduled to be
monitored again in the next cell of the trace. This concept
of rule reactivation was firstly described in [Barringer et al.,
2010].
A RuleRunner rule system RR is defined as 〈RE , RR, S〉
where RE anr RR are, respectively, the sets of evaluation
and reactivation rules, and S is the initial state. The general
algorithm for creating and running a RR is described in
Algorithm 1:

Algorithm 1 Preprocessing and Monitoring Cycle

1: Parse the LTL formula in a tree
2: Generate evaluation rules, reactivation rules and the

initial state
3: while new observations exist do
4: Add observations to state
5: Compute truth values using evaluation rules
6: Compute next state using reactivation rules
7: if state contains SUCCESS or FAILURE then
8: return return SUCCESS or FAILURE

respectively
9: end if

10: end while

In a nutshell, RuleRunner’s behaviour is the following:
in the preprocessing phase, RuleRunner encodes an LTL
formula in a rule system. The rule system verifies the
compliance of a trace w.r.t. the encoded property by entering

a monitoring loop, composed of observing a new cell of the
trace and computing the truth value of the property in the
given cell. If the property is irrevocably satisfied or falsified
in the current cell, RuleRunner outputs a binary verdict. If
this is not the case, another monitoring iteration is entered,
and -like in [Barringer et al., 2010]- undecided formulae
trigger the reactivation of the corresponding monitoring rule.
FLTL semantics guarantees that, if the trace ends, the verdict
in the last cell of the trace is binary.

It is worth stressing how RuleRunner’s approach is
bottom-up, forwarding truth values from mere observations
to the global property. RuleRunner does not keep a [multi]set
of alternatives, as it is rooted in matching the encoding of
the formula with the actual observations, computing the
unique truth value of every subformula of the property, and
carrying along a single state composed of certain information.

RuleRunner provides rich information about the ’s’
of a property: in any iteration the state describes which
subformulae are under monitoring and what the truth value
is; when the monitoring ends, the state itself explains why
the property was verified/falsified.

One minimal example that shows all functionalities of
RuleRunner is ♦a: we will use it as a working example
throughout the paper. In the next example, we consider the
RuleRunner system encoding ♦a and its evolution over the
trace [b− a− b, END].

The desired behaviour of the monitoring is the following:
• In the first cell, b is observed and ignored, while non

observing amakes a false. Since the end of the trace has
not been reached, ♦a is undecided, and the initial state
is repeated in the second cell. Note that in the general
case the initial state is not identically recomputed in the
following cells.
• In the second cell, a is observed, thus satisfying, in

cascade, a and ♦a; since the main formula has been
satisfied, the monitoring can stop in the current cell
reporting a success.

RuleRunner creates the following rule system:

EVALUATION RULES
• R[a], a is observed→ [a]T

• R[a], a is not observed→ [a]F

• R[♦a], [a]T → [♦a]T

• R[♦a], [a]?→ [♦a]?P

• R[♦a], [a]F → [♦a]?P

• [♦a]?, [END]→ [♦a]F

• [♦a]?,∼[END]→ [♦a]?

• [♦a]T → SUCCESS

• [♦a]F → FAILURE

REACTIVATION RULES
• [♦a]?→ R[a], R[♦a]

INITIAL STATE R[a], R[♦a]



EVOLUTION OVER [b− a− b, END]
state R[a], R[♦a]

+ obs R[a], R[♦a], b

eval [a]F, [♦a]?P, [♦a]?

react R[a], R[♦a]

state R[a], R[♦a]

+ obs R[a], R[♦a], a

eval [a]T, [♦a]T, SUCCESS

STOP PROPERTY SATISFIED

It is easy to see that RuleRunner’s behaviour matches the
desired one, [Perotti, 2013] provides a detailed description of
RuleRunner’s behaviour.

4 Neural Encoding
The first step of the neural encoding is the translation of
a RuleRunner system into an equivalent logic program
(Algorithm 2).

Algorithm 2 From RuleRunner to Logic Programs

1: function RR2LP(φ)
2: Create RR = 〈RE , RR, S〉 encoding φ
3: Create an empty logic program LP . CE
4: for all R[φ], [ψ1]V, . . . , [ψn]V,→ [φ]V ∈ RE do
5: LP ← LP ∪ [φ]V :-∼[U ], R[φ], [ψ1]V, . . . , [ψn]V
6: end for . CP
7: for all o ∈ RE ∪RR do
8: LP ← LP ∪ o :- ∼[U ], o
9: end for

10: for all R[φ] ∈ RE ∪RR do
11: LP ← LP ∪ R[φ] :- ∼[U ], R[φ]
12: end for . CR
13: for all [φ]?→ R[φ], R[ψ1], . . . , R[ψn] ∈ RR do
14: LP ← xLP ∪ R[φ] :- [U ], [φ]?
15: for all R[ψi] do
16: LP ← LP ∪ R[ψi] :- [U ], [φ]?
17: end for
18: end forreturn LP
19: end function

The algorithm creates a single logic programLP ; however,
for the sake of explanation, we distinguish three kinds of
clauses: evaluation, reactivation and persistence (marked
as CE , CR, CP in Algorithm 2). Intuitively, evaluation and
reactivation clauses (in LP ) mirror, respectively, evaluation
and reactivation rules in RuleRunner. Persistence clauses
are used to ’remember’ observations and active rules by
explicit re-generation: these clauses follow the pattern
x :- ∼[UPDATE], x (shortened to [U] in the algorithm).

Evaluation clauses are obtained from evaluation rules by
adding one extra literal in the body, ∼[UPDATE]. The
reactivation rules are split into several reactivation clauses,
one for each literal in the head of the rule; [UPDATE]
is added in the body of all these rules. Finally, for all

observations and truth evaluations in the rules, a persistence
clause is added.

RuleRunner’s monitor loop fires the evaluation and
reactivation rules in an alternate fashion. We simulate that by
introducing the [UPDATE] literal and using it as a switch:
when [UPDATE] holds, only reactivation clauses can hold,
while when it does not all reactivation rules are inhibited
and evaluation and persistence clauses are potentially
active. RuleRunner iteratively builds a state, going through
partial solutions; in the same way, some sort of clamping
is necessary for the partial results to be remembered by the
LP. We achieve that by adding persistence clauses: as long
as [UPDATE] does not hold, all observations and rule
names are re-obtained at each iteration of the logic program.
Another way to achieve this persistence is to add the desired
observations/rule names as facts: we opted for the former
because persistence clauses have a standard structure, while
adding facts to the LP correspond to clamping neurons in a
neural network.

In our working example, the rule system encoding ♦a is
translated into the following logic program:

EVALUATION CLAUSES
• [a]T :-∼[UPDATE], R[a], a

• [a]F :-∼[UPDATE], R[a],∼a

• [♦a]T :-∼[UPDATE], R[♦a], [a]T

• [♦a]?P :-∼[UPDATE], R[♦a], [a]?

• [♦a]?P :-∼[UPDATE], R[♦a], [a]F

• [♦a]? :-∼[UPDATE], [♦a]?,∼[♦a]T,∼END

• [♦a]F :-∼[UPDATE], [♦a]?P,∼[♦a]T,END

• [SUCCESS] :-∼[UPDATE], [♦a]T

• [FAILURE] :-∼[UPDATE], [♦a]F

PERSISTENCE CLAUSES
• a :-∼[UPDATE], a

• R[a] :-∼[UPDATE], R[a]

• R[♦a] :-∼[UPDATE], R[♦a]

REACTIVATION CLAUSES
• R[a] :- [UPDATE], [a]?

• R[a] :- [UPDATE], [♦a]?

• R[♦a] :- [UPDATE], [♦a]?

Summarising, we start from a formal property φ expressed
as an LTL formula, we compute a RuleRunner rule system
RRφ monitoring that formula, and then we encode the rule
set in a logic program LPφ. By doing so, we can exploit the
CILP algorithm [d’Avila Garcez and Zaverucha, 1999] to
translate the logic program into an equivalent neural network
NNφ.

Continuing with the working example, the neural network
encoding a monitor for ♦a is visualised in Figure 2. The
input and output layers include neurons whose labels
correspond to atoms in the logic program (and the rule
system); each hidden neuron corresponds to one clause in the
logic program. Active neurons are filled in grey: in Figure



R[a]a [a]T [a]FR[♢a] [♢a]T[a]? [♢a]?PEND[♢a]? [♢a]F[U]

[a]T[a]F [♢a]T [♢a]?P [♢a]?[♢a]F[S][F]R[a]a R[♢a] END

Figure 2: Neural network for monitoring ♦a

2, the initial state (R[a], R[♦a]) is depicted. Solid lines
represent connection with positive weights, dashed lines
represent negative weights. For instance, the leftmost hidden
neuron has ingoing connections from a (negative weight),
R[a], and [U ] (negative weight) and it has an outgoing
connection towards [a]F ; this corresponds to the clause
[a]F :- a,∼a,R[a],∼[U ] (which is the second clause in the
LP in the previous page).

Reasoning: The general algorithm for neural monitoring is
described in Algorithm 3:

Algorithm 3 Preprocessing and Monitoring Cycle in NNφ
1: function NN-MONITOR(φ,trace t)
2: CreateRR = 〈RR, RE , S〉 encoding φ (RuleRunner)
3: Rewrite RRφ into LPφ (Algorithm 2)
4: Rewrite LPφ into NPφ (CILP )
5: Add S to the input layer
6: while new observations exist in t do
7: Add the new observations to the input layer
8: Let the network converge
9: if S contains SUCCESS (resp.FAILURE) then

10: return return SUCCESS (resp.FAILURE)
11: end if
12: Add UPDATE to the input layer
13: Fire the network once
14: end while
15: end function

Adding x to a given layer means activating the neuron
corresponding to x in that layer. In terms logic programming,
this would correspond to adding the fact x to the program.

It is worth comparing how, from an operational point of
view, a RuleRunner system (RRφ) and its neural encoding
(NNφ) carry out the monitoring task. In each iteration of the
main loop, RuleRunner goes through the list of evaluation
rules, adding the result of each active rule to the state. When
the end of the evaluation rules list is reached, the reactivation
rules are allowed to fire, collecting the output in a new
state. In the neural network the alternating of evaluation
and reactivation is achieved by means of the [UPDATE]
neuron, which acts as a switch. In the evaluation phase, all
evaluation rules are fired in parallel until convergence.

5 Implementation and Initial Results
We implemented RuleRunner2 and the neural modules.
Rulerunner is implemented in Java; in order to maximise the
performances of the neural encoding, we experimented with
several implementations, focusing on matrices manipulation.

Figure 3: Compared performances

Figure 4: Compared performances

One key point in understanding how to fully exploit the
parallelism of neural network models (and therefore optimise
the performance of the neural encoding of RuleRunner)

2www.di.unito.it/∼perotti/RV13.jnlp

http://www.di.unito.it/~perotti/RV13.jnlp


is that, even if the number of rules is large, each rule has
a constant number of literals in the body, and each literal
appears in (at most) a constant number of rules. Therefore,
the weight matrices are very sparse.

We tested RuleRunner’s performance on a number of tests
and compared the results with two Matlab implementations,
m base and m sparse: in the latter, we treated all
matrices (activations, thresholds, weights) as sparse. It is
worth stressing that, since we compared two prototypes
implemented in different programming languages (Java and
Matlab), it would not be fair to compare their performances
in absolute terms; we are, instead, interested in scalability
and asymptotic analysis.

These preliminary experiments show how m base is
outperformed by RuleRunner, but m sparse scales better
than both. Figure 3 shows the impact of increasing the rule
numbers, in Figure 4 the size of the encoded formula is
increased. In all cases the Y axis reports the average time
required to process 10000 cells of randomly-generated traces.

6 Conclusions

With the goal of making the concept of compliance flexible
and dynamic, we tackled the challenge of developing a
framework to rigidly verify a system’s compliance with a
model, modelling at the same time what actually takes place
in terms of process management, making it exploitable by
other systems. We chose Neural-Symbolic Integration as the
underlying paradigm and rule-based verification system as a
bridge from the (symbolic) area of Runtime Verification and
machine learning through neural networks.

As a first contribution, this paper provides a methodology
for performing runtime verification within a neural network,
encoding a novel rule system in a logic program and then in
a recurrent neural network; we developed a prototype for our
system, observing that an implementation based on sparse
matrices shows better performances than RuleRunner, both
in absolute terms and from the point of view of scalability.
Secondly, our approach seeks to reduce the gap between
Runtime Verification, Artificial Intelligence and Business
Process Management, proposing a system able to perform
RV tasks in a model with intrinsic learning features.

Future work involve the exploitation of standard and
ad-hoc learning strategies, in relation with sequence and
reinforcement learning: the goal is to analyse the adaptation
capability of the model in order to integrate formal properties,
encoded in the network, with the actual behaviour of the
observed system, by means of feeding traces to the network
as inductive learning examples.

References
[Barringer et al., 2010] Howard Barringer, David E.

Rydeheard, and Klaus Havelund. Rule systems for
run-time monitoring: from eagle to ruler. J. Log. Comput.,
20(3):675–706, 2010.

[Bauer et al., 2006] Andreas Bauer, Martin Leucker, and
Christian Schallhart. Monitoring of real-time properties.
In S. Arun-Kumar and Naveen Garg, editors, FSTTCS,
volume 4337 of Lecture Notes in Computer Science, pages
260–272. Springer, 2006.

[Bauer et al., 2007] Andreas Bauer, Martin Leucker, and
Christian Schallhart. The good, the bad, and the ugly, but
how ugly is ugly? In Oleg Sokolsky and Serdar Tasiran,
editors, RV, volume 4839 of Lecture Notes in Computer
Science, pages 126–138. Springer, 2007.

[d’Avila Garcez and Zaverucha, 1999] Artur S. d’Avila
Garcez and Gerson Zaverucha. The connectionist
inductive learning and logic programming system. Appl.
Intell., 11(1):59–77, 1999.

[Eisner et al., 2003] Cindy Eisner, Dana Fisman, John
Havlicek, Yoad Lustig, Anthony McIsaac, and David Van
Campenhout. Reasoning with temporal logic on truncated
paths. In CAV’03, pages 27–39, 2003.

[Garcez et al., 2002] Artur S. d’Avila Garcez, Dov M.
Gabbay, and Krysia B. Broda. Neural-Symbolic Learning
System: Foundations and Applications. Springer-Verlag
New York, Inc., 2002.

[Hoelldobler and Kalinke, 1994] Steffen Hoelldobler and
Yvonne Kalinke. Towards a new massively parallel
computational model for logic programming. In ECAI94
workshop on Combining Symbolic and Connectioninst
Processing, pages 68–77, 1994.

[Leucker and Schallhart, 2009] Martin Leucker and
Christian Schallhart. A brief account of runtime
verification. J. Log. Algebr. Program., 78(5):293–303,
2009.

[Lichtenstein et al., 1985] Orna Lichtenstein, Amir Pnueli,
and Lenore D. Zuck. The glory of the past. In Rohit Parikh,
editor, Logic of Programs, volume 193 of Lecture Notes in
Computer Science, pages 196–218. Springer, 1985.

[Perotti, 2013] Alan Perotti. Rulerunner technical report.
2013. arXiv:1306.0810.

[Pnueli, 1977] Amir Pnueli. The temporal logic of
programs. In Proceedings of the 18th Annual Symposium
on Foundations of Computer Science, pages 46–57,
Washington, DC, USA, 1977. IEEE Computer Society.

[Towell and Shavlik, 1994] Geoffrey G. Towell and Jude W.
Shavlik. Knowledge-based artificial neural networks.
Artif. Intell., 70(1-2):119–165, 1994.


	Introduction
	Background
	Business Process Management
	Runtime Verification
	Neural-Symbolic Integration

	RuleRunner
	Neural Encoding
	Implementation and Initial Results
	Conclusions

