

EQUIPPING SYMBOLIC FRAMEWORKS WITH SOFT COMPUTING FEATURES

KAI-UWE KÜHNBERGER INSTITUTE OF COGNITIVE SCIENCE (IKW) UNIVERSITY OF OSNABRÜCK

9th International Workshop on Neural-Symbolic Learning and Reasoning (NeSy'13) Beijing – August 5th, 2013

Kai-Uwe Kühnberger IKW, Osnabrück

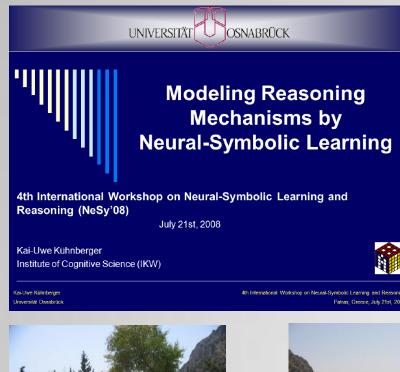
OVERVIEW

- Introduction
 - History: NeSy'08
- Convergence Tendencies of the Neural and the Symbolic Worlds
 - Some Examples
- Adaptation from a Symbolic Perspective: An Example
 - Heuristic-Driven Theory Projection (HDTP)
 - Institutions
- Conclusions

INTRODUCTION

NESY'08

Kai-Uwe Kühnberger IKW, Osnabrück



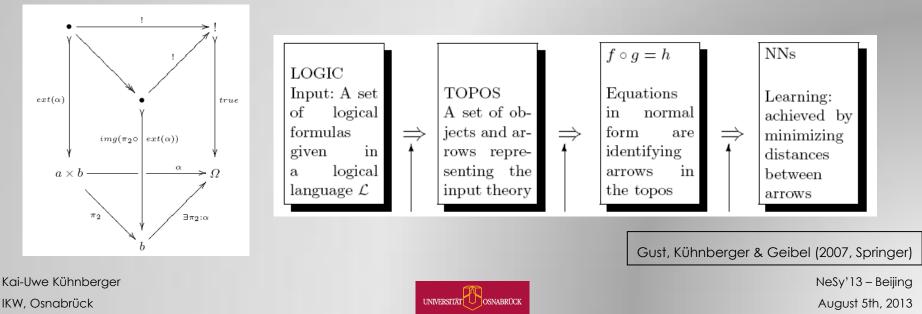
In 2008, I gave a talk at the 4th International Workshop on Neural-Symbolic Learning and Reasoning in Greece.

It was not only scientifically interesting, but also culturally!

Kai-Uwe Kühnberger IKW, Osnabrück

- In 2008, my talk covered some of the following issues
 - Classical Problems of Neural-Symbolic Integration
 - Cognitive Aspects of Neural-Symbolic Integration
 - Cognitive Architectures
 - Cognitively Motivated Constraints (dynamic representations, the role of models, reorganization of memory, variety of reasoning and learning paradigms)
 - Neural-Symbolic Reasoning
 - Attempt to address some of the cognitively motivated constraints
 - Application Domains of Neural-Symbolic Frameworks
 - Conclusions

- Additionally, I added some remarks to an approach we proposed around this time: the Topos approach
- Unfortunately, the Topos approach was not really successful in applications and proved also to be difficult in certain technical aspects.



- In my talk, I claimed essentially that neural-symbolic integration is a good approach do address several problems and constraints (imposed by cognitive scientists) to possible models.
 - Symbolic-subsymbolic gap
 - Role of models
 - Reorganizing issues of our memory system
 - Aspects of generality / general intelligence
 - Dynamic representations
- Essentially I still think that this claim is still correct.
- Nevertheless, research in neural-symbolic integration did not come up with uncontroversial frameworks so far addressing these issues.

TODAY

- Today I will take another perspective
 - I think that there is a tendency that many researchers equip their symbolic frameworks with properties that are usually ascribed to the neural world and vice versa.
 - They want to model uncertainty / fuzziness, dynamic changes in representations, model-based reasoning, clash resolution, learning etc.
- I think that this is of interest for the field of Neural-Symbolic Integration because the convergence of the two world is minimized by these endeavors.

CONVERGENCE TENDENCIES

SOME EXAMPLES

Kai-Uwe Kühnberger IKW, Osnabrück

THE GAP

The symbolic-subsymbolic distinction

• There is an obvious tension between symbolic and subsymbolic representations.

		Symbolic Approaches	Subsymbolic Approaches
•	Methods	Mainly logical and / or algebraic	Mainly analytic
→	Strengths	Productivity, recursion, compositionality	Robustness, parsimony, adaptation
•	Weaknesses	Consistency constraints, lower cognitive abilities	Opaqueness, higher cognitive abilities
⇒	Applications	Reasoning, problem solving, planning etc.	Learning, vision etc.
→	Relation to Neurobiology	Not biologically inspired	Biologically inspired
→	Other Features	Crisp, static	Fuzzy, dynamic

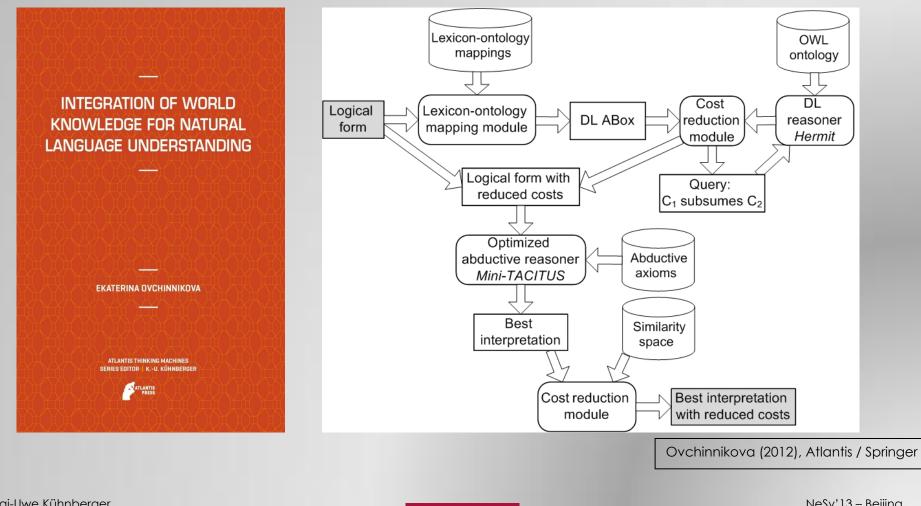
• The following examples show that there are tendencies to integrate certain features from the subsymbolic world into symbolic models.

Kai-Uwe Kühnberger IKW, Osnabrück

ONTOLOGIES IN LANGUAGE UNDERSTANDING SYSTEMS

- In language understanding systems there is the need to integrate linguistic knowledge and world knowledge.
- Because domain knowledge is often noisy, contextdependent, and uncertain adding soft-computing features is a natural choice.
- In Ovchinnikova (2012), a weighted abductive reasoning system is used in order to integrate (besides other things)
 - Lexical-semantic data bases (FrameNet and WordNet)
 - Ontological knowledge
 - Clash resolution strategies
 - Deductive and abductive reasoning
 - Vector space-based semantic similarity measure
 - Cost model that ranks hypothesis inferences for text understanding tasks

ONTOLOGIES IN LANGUAGE UNDERSTANDING SYSTEMS



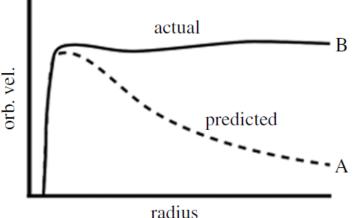
Kai-Uwe Kühnberger IKW, Osnabrück

ONTOLOGY REPAIR SYSTEMS

Ontology repair systems show

- A high dynamic for resolving clashes between theories
- They are based on a rather few number of principles that allow the resolution of clashes
- The resolution of clashes can result in changing the language, the introduction of new concepts, deletion of concepts, change of the underlying type theory etc.
- Example (Physics):
 - Postulation of dark matter in order to explain the orbital velocities of galaxies against distance to the center.

Bundy (2013), Proceedings A



ONTOLOGY REPAIR SYSTEMS

- Scientific discovery requires dynamic updates of existing theories. $\mathcal{O}_x \vdash f(\text{stuff}) = v_{x_t}$
- Consider the following situation:

 $\mathcal{O}_x \vdash f(\text{stuff}) = v_x,$ $\mathcal{O}_y \vdash f(\text{stuff}) = v_y$

 $\mathcal{O}_{\text{arith}} \vdash v_x \neq v_y,$

• The contradiction is resolved by specifying new signatures: $Sig(\nu(\mathcal{O}_x)) ::= {stuff_{vis} \tau, stuff_{invis} \tau} \cup Sig(\mathcal{O}_x)$ and

 $\operatorname{Sig}(\nu(\mathcal{O}_y)) ::= \{\operatorname{stuff}_{\operatorname{vis}} \tau\} \cup \operatorname{Sig}(\mathcal{O}_y) \setminus \{\operatorname{stuff} \tau\}.$

• Axiom update works as follows: $Ax(\nu(\mathcal{O}_x)) ::= \{ \operatorname{stuff_{invis}} ::= \operatorname{stuff}_{\tau} \operatorname{stuff_{vis}} \} \cup Ax(\mathcal{O}_x) \text{ and}$ $Ax(\nu(\mathcal{O}_y)) ::= \{ \phi \{ \operatorname{stuff/stuff_{vis}} \} | \phi \in Ax(\mathcal{O}_y) \}$

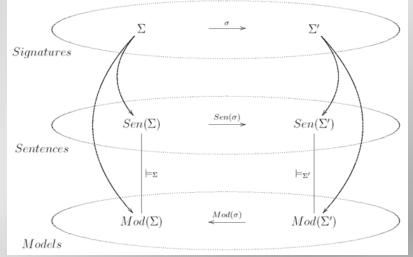
Bundy (2013), Proceedings A

NeSy'13 – Beijing

Kai-Uwe Kühnberger IKW, Osnabrück

DYNAMICS OF ANALOGY MAKING

- Analogy making is the identification of structural commonalities between two theories.
- Here are some soft-computing features of analogy making:
 - Learning of cross-domain properties and relations that cannot be associated in classical frameworks.



- Adaptation of the underlying input theories (re-representation based on logical deductions) if this is necessary for the computation of better analogies.
- Dynamic transfer of knowledge from the source to the target domain.
- Ranking of candidates by a cost function or an appropriate probability measure.
- Mapping signatures of underlying domain theories onto each other.

OTHER EXAMPLES

- The previous approaches add several features of soft-computing properties to classical symbolic approaches.
- Here are further candidates for these extensions:
 - Relational Learning combining logic representation with statistical learning.
 (de Raedt, 2008, Springer)
 - Markov Logic combining logic with probability.

(Richardson & Domingos (2006), Machine Learning)

- Marcus Hutter's AIXI system combining reinforcement learning, with Kolmogorov complexity, compression of data and more.
 (Hutter, 2006, Springer)
- Wang's NARS system combining logic representations with the modeling of uncertainty. (Wang, 2006, Springer)

EXTENSION OF SYMBOLIC FRAMEWORKS

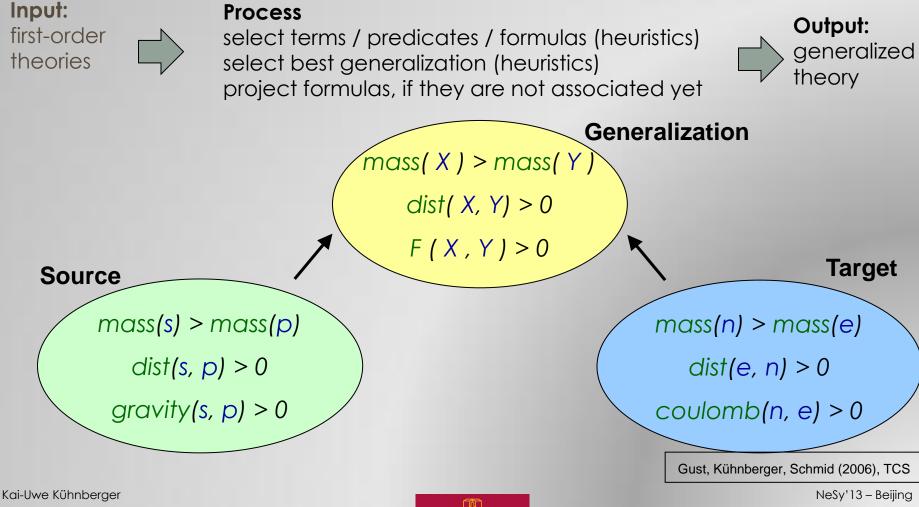
- There is a tendency that many researchers from a classical symbolic background tend to equip their models with a combination of the following features
 - Learning strategies
 - Methods for modeling uncertainty / fuzziness
 - Dynamic change and adaptation of knowledge
 - Usage of analytic methods in addition to a logic / algebraic basis
 - Etc.
- In short: The equipment of classical symbolic frameworks with soft computing features results in a tendency of convergence of the symbolic and the subsymbolic world.
 - Such a modeling of these features is not necessarily neurally inspired, but it has many properties that neural approaches show as well.

ADAPTATION FROM A SYMBOLIC PERSPECTIVE

HEURISTIC-DRIVEN THEORY PROJECTION

Kai-Uwe Kühnberger IKW, Osnabrück

HEURISTIC-DRIVEN THEORY PROJECTION (HDTP)



HDTP: ANTI-UNIFICATION

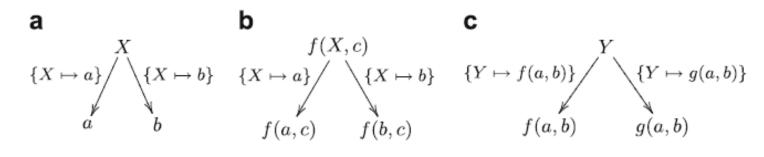


Fig. 3. Plotkin's first-order anti-unification.

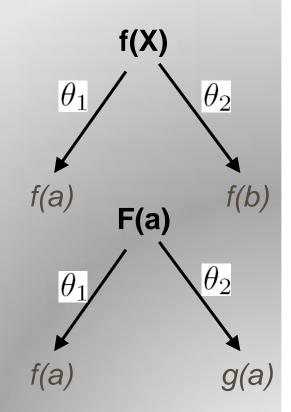
- Anti-unification was introduced as a dual construction to unification by Gordon Plotkin (Plotkin, 1970).
- Anti-unification constructs a generalization of two terms by using substitutions.

Schwerin et al. (2009), CogSys

HDTP: ANTI-UNIFICATION

How to compare source & target theory structurally?

- Task: least general generalizations of facts and rules
- First-order anti-unification (Plotkin, 1970):
 generalization always exists
 at most finitely many generalizations
 there exists a unique least general generalization
- What about *full second-order* anti-unification?
 generalization always exists
 at most finitely many generalizations
 x exists unique least general generalization



Kai-Uwe Kühnberger IKW, Osnabrück

HDTP: CHALLENGES

• Challenges for HDTP:

- 1. Higher-order anti-unification
 - In analogy-making not only first-order generalizations but also higher-order generalizations are required.
 - Problem: in the worst case there exist infinitely many anti-instances that are pairwise incompatible with each other.
- [2. Anti-unification of theories]
 - [Not only terms need to be generalized but also formulas and ultimately whole theories of a particular domain.]
- [3. Learning process]
 - [The establishment of an analogical relation is already a learning step.]
 - [Nevertheless, analogies are only to a certain extend applicable, they depend on contexts and parameters, and they give rise to further more general principles.]

RESOLVING CHALLENGE 1

Restricted Higher-Order Anti-Unification:

Generalizations are forced to be always structurally simpler **Basic Substitutions in HDTP:**

• Renaming $F(t_1,\ldots,t_n) \xrightarrow{\rho^{F,F'}} F'(t_1,\ldots,t_n)$

- Fixation $F(t_1,\ldots,t_n) \xrightarrow{\phi_f^F} f(t_1,\ldots,t_n)$
- Argument insertion $F(t_1,\ldots,t_n) \xrightarrow{\iota_{G,i}^{F,F'}} F'(t_1,\ldots,t_i,G(t_{i+1},\ldots,t_{i+k}),t_{i+k+1},\ldots,t_n).$
- Permutation $F(t_1,\ldots,t_n) \xrightarrow{\pi_{\alpha}^{F,F'}} F'(t_{\alpha(1)},\ldots,t_{\alpha(n)}).$

 \rightarrow With these restrictions we get only finitely many anti-instances

Krumnack, Schwering, Gust, Kühnberger (2007), Al'07

REMARKS

- Some features of HDTP
 - HDTP's computation is highly heuristic-driven.
 - The system computes different candidates for an analogical relation (there is no right or wrong analogy, rather candidates are more or less psychologically plausible).
 - Currently the ranking of candidates is based on cost functions (i.e. a form of Occam's razor is applied).
 - Probabilistic extensions of HDTP are currently considered.
 - Besides the core process the engine incorporates rerepresentation aspects of the input domains.
- Nevertheless, the syntactic computation generates formal difficulties in specifying what the semantics of this type of dynamical change is.

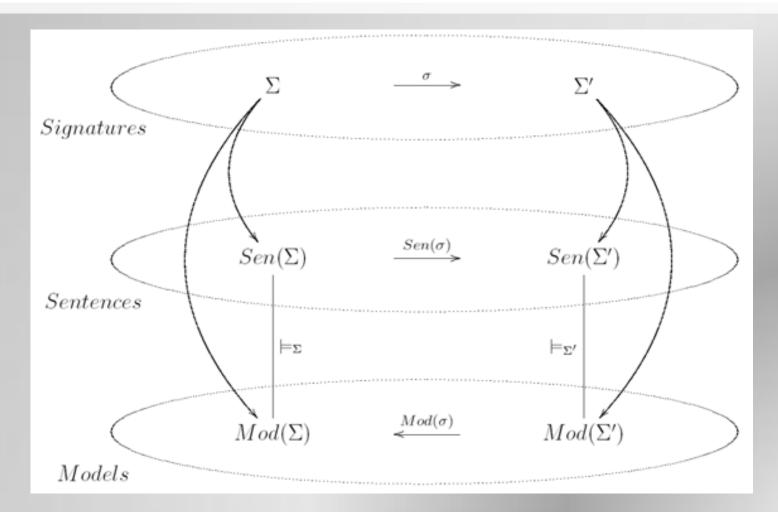
HDTP AND THE THEORY OF INSTITUTIONS

- An institution consists of a collection of signatures Sign, such that to each signature Σ a collection Sen(Σ) of all Σ -sentences and a collection Mod(Σ) of all Σ -models are assigned.
 - In the case of FOL, this corresponds to all FOL-sentences and all possible interpretations of symbols from Σ .
- A signature morphism $f : \Sigma \to \Sigma'$ induces functions **Sen**(f) : **Sen**(Σ) \to **Sen**(Σ') and **Mod**(f) : **Mod**(Σ') \to **Mod**(Σ) such that it holds: for all $\phi \in$ **Sen**(Σ) and $M' \in$ **Mod**(Σ'):

 $\mathcal{M}' \models_{\Sigma'} \mathbf{Sen}(f)(\phi) \qquad \Leftrightarrow \qquad \mathbf{Mod}(f)(\mathcal{M}') \models_{\Sigma} \phi$

 Institutions allow to give the change of signatures in the anti-unification process a meaning.

HDTP AND THE THEORY OF INSTITUTIONS



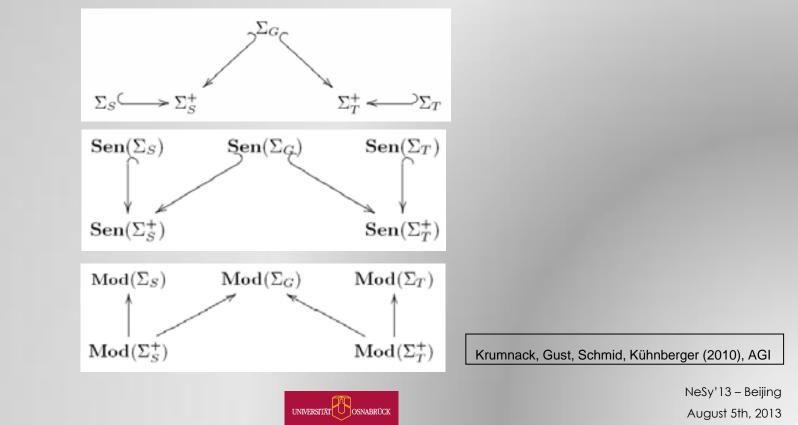
HDTP AND THE THEORY OF INSTITUTIONS

• We use the following abbreviations:

Kai-Uwe Kühnberger

IKW, Osnabrück

and



HDTP AND THE THEORY OF INSTITUTIONS

- Unfortunately, analogy-making in the sense of HDTP is more general than this. It includes, for example, complex substitutions which are not covered by the presented framework.
- Fortunately, institution theory provides concepts that can even model these situations, namely the concept of a general Σ -substitution

HDTP AND THE THEORY OF INSTITUTIONS

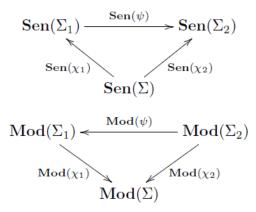
Definition 2. For any signature Σ of an institution, and any signature morphisms $\chi_1 : \Sigma \to \Sigma_1$ and $\chi_2 : \Sigma \to \Sigma_2$, a general Σ -substitution $\psi_{\chi_1:\chi_2}$ consists of a pair

$$\langle \mathbf{Sen}(\psi), \mathbf{Mod}(\psi) \rangle$$

where

- $\operatorname{Sen}(\psi) : \operatorname{Sen}(\Sigma_1) \to \operatorname{Sen}(\Sigma_2)$ is a function
- $Mod(\psi) : Mod(\Sigma_2) \to Mod(\Sigma_1)$ is a functor

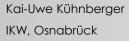
such that both of them preserve Σ , i.e. the following diagrams commute:



and such that the following satisfaction condition holds:

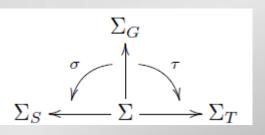
 $\operatorname{Mod}(\psi)(\mathfrak{m}_2) \models \rho_1$ if and only if $\mathfrak{m}_2 \models \operatorname{Sen}(\psi)(\rho_1)$ for each Σ_2 -model \mathfrak{m}_2 and each Σ_1 -sentence ρ_1 .

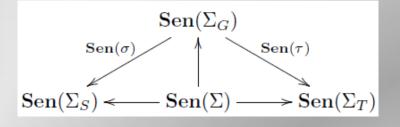
- A general Σ-substitution extends the concept of a signature morphism.
- It can be shown that the concept of general Σ-substitution covers simple signature morphisms, firstorder substitutions, second-order substitutions, derived signature morphisms etc.
- The crucial properties of a contravariant relation between the model classes and the theories remain intact.

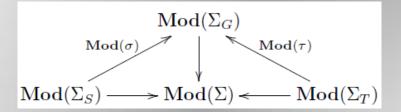


HDTP AND THE THEORY OF INSTITUTIONS

- A general Σ-substitution and the induced diagrams on the sentences level and the model class level.
- The intuition is that Σ_G corresponds to the signature of the generalized theory, Σ_S to the signature of the source theory, and Σ_T to the signature of the target theory.







REMARKS

- As mentioned already, analogy-making contains many soft-computing features, in particular, dynamical changes of representations.
- The shown dynamics of a logical system is surprising:
 - Changing dynamically the language of a theory is hard to describe on a semantic level.
 - Nevertheless, the theory of institutions provides a nice possibility to model the syntax and the semantics of analogy-making.
- It may be the case that it is now time to work more systematically towards the expansion of symbolic frameworks with soft-computing features.

CONCLUSIONS

FUTURE WORK

Kai-Uwe Kühnberger IKW, Osnabrück

SUMMARY

- The current situation in neural-symbolic integration seems to be unsatisfactory to a certain extent.
- Nevertheless, there are many examples where researchers equip symbolic frameworks with soft-computing features.
- These soft-computing features deal with dynamical change, adaptivity, robustness, learning abilities and the like.
- The convergence of the two worlds along the lines described here may be easier to achieve as the development of a monolithic system realizing neural-symbolic integration.

THANK YOU VERY MUCH FOR YOUR ATTENTION !!!

QUESTIONS?

Kai-Uwe Kühnberger IKW, Osnabrück

