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Abstract
Although inference and learning arise traditionally
from different schools of thought, in the last few
years they have been framed in nice unified frame-
works, in the attempt to resemble clever human
decision mechanisms. In this paper, however, we
support the position that a true understanding of
human-based inference and learning mechanisms
might arise more naturally when replacing the fo-
cus on logic and probabilistic reasoning with that of
cognitive laws, in the spirit of most variational laws
of Nature. To this end, we propose a strong anal-
ogy between learning from constraints and analytic
mechanics, which suggests us that agents living in
their own environment obey laws exactly like those
of particles subjected to a force field.

1 Introduction
Inference and learning have always been the subject of cu-
riosity and in-depth investigations in the attempt to unveil
their secret and grasp their meaning. As a truly manifes-
tation of human being, they have been studied by philoso-
phers, logicians, psychologists, as well as by scientists in ar-
tificial intelligence. Interestingly, while inference has been
early framed into logic formalisms, the process of learning
has been mostly attacked by statistical approaches. Nowa-
days, the marriage of these methodologies has been offering
nice theoretical interpretations of either inference or learn-
ing which, amongst other relevant results, leads to founda-
tions on probabilistic reasoning. Beginning from seminal
studies at the end of the Eighties (see e.g. [Pearl, 1988]),
nowadays there is a huge literature in the field, from which
we can see significant theoretical and experimental advances.
Related studies on bridging symbolic and sub-symbolic rep-
resentations in neural networks have been developing under
a remarkable variety of methodologies (see e.g. the Work-
shop series on Neural-Symbolic Learning and Reasoning
http://www.neural-symbolic.org/). This lack of
methodological focus seems to indicate that neural symbolic
integration is still looking for strongly unifying approaches,
driven by solid mathematical foundations like for probabilis-
tic reasoning. On the other side, the studies on neural sym-
bolic integration have been opening the mind to an in-depth

re-thinking of inference and learning, that is well outside the
borders of probability theory.

Beginning from the biological inspiration of neural
network-based intelligent agents, in this paper we support the
position that a natural integration of learning and inference
arises when formulating the problem within the context of in-
telligent agents interacting on-line with the environment un-
der the realm of cognitive laws. As time goes by, in such an
environment, the agent is giving stimuli expressed in terms
of constraints amongst a set of tasks and reacts by follow-
ing laws emerging from the stationary point of a functional
referred to as the cognitive action. This is strongly inspired
from analytic mechanics, where the notion of particles sub-
jected to a force field is doomed to follow the minimization
of the action functional. When considering agents embedded
in their environment, we naturally associate the weights of
the neural network with the coordinates of the particles, the
loss related to the constraints with the potential energy, and
the sum of the squares of the derivative of the weights with
the kinetic energy. This leads us to study the life of the agent
by means of the elegant Lagrangian and Hamiltonian frame-
works. However, in order to fully grasp the above links, we
need to extend these formalisms with the insurgence of dis-
sipative processes. Basically, a newborn agent begins its life
with a certain potential energy and continues by changing its
parameters, thus transforming that energy into kinetic energy
and by dissipating the rest. As time goes by, the velocity of
the weights decreases until the agent ends into a stable con-
figuration, where all the initial potential energy is dissipated.
This results in a learning mechanism paired with an inferen-
tial process, which improves as time goes. In the next section
we discuss how to bridge logic and perception, while in Sec-
tion 3 we propose the laws of learning as they come out from
stationary point of the cognitive action. In Section 4 we show
that the weights evolve according to general energy conserva-
tion principles and, finally, in Section 5 we give a perspective
view on life-long learning build up on the proposed theory.

2 Bridging logic and perception
To sketch the idea, let us consider the following example. Let
x, y ∈ IR and let us assume that we are given some informa-
tion on functions

A : IR→ {0, 1}



B : IR2 → {0, 1}

defined as follows

∀x ∈ [0, 1] : A(x) = true, ∀x 6∈ [0, 1] : A(x) = false (1)

∀(x, y) ∈ [0, 1]2 : B(x, y) = true,

∀(x, y) 6∈ [0, 1]2 : B(x, y) = false.

Now suppose that an oracle gives the intelligent agent the fol-
lowing piece of knowledge

∀x∀y A(x) ∧A(y)⇒ B(x, y), (2)

Let a : IR→ [0, 1] and b : IR2 → [0, 1] be real-valued func-
tions associated withA(·) andB(·, ·), respectively. Now, sup-
pose that an intelligent agent is living on the temporal horizon
[0, te], with te > 0. Then, we can associate the granule of
knowledge (2) with

V1(a, b) =
∫ te

0

a(x(t)) · a(y(t)) (1− b(x(t), y(t))) dt,

which needs to be as small as possible if we want to ap-
proximate (2). Now, let us assume that the agent ac-
quires also the additional supervised pairs {(xκ, daκ)}`aκ=1 and{
((xκ, yκ), d

b
κ)
}`b
κ=1

of A(·) and B(·, ·). They come at time

{taκ}`aκ=1 and
{
tbκ
}`b
κ=1

, respectively. Given c1 > 0 and
c2 > 0, the process of learning does require to control the
functional

V(a, b) := c1V1(a, b) + c2V2(a, b)

where

V2(a, b) :=

∫ te

0

`a∑
κ=1

h(a(xκ), d
a
κ) · δ(t− taκ) dt

+

∫ te

0

`b∑
κ=1

h(b(xκ, yκ), d
b
κ) · δ(t− tbκ) dt,

and h is a loss functions (e.g. the hinge loss). This way of
bridging logic and learning has been properly formalized for
the case of FOL in [Diligenti et al., 2012] using kernel-based
representations for the functions.

Beginning from this example, let us make the assumption
that functions a and b each depend on a corresponding vector
of weights wa ∈ IRma and wb ∈ IRmb , respectively. Notice
that this is different with respect to the kernel-based solution
of [Diligenti et al., 2012], but most of the concepts are the
same. In order to gain a general formulation, from now on,
let x ∈ X ⊂ IRn and f : X × W → IRq be the notation
for a multitask system in which q different interacting tasks
transform inputs from space X using weights in W ∈ IRm.
Now, we like to think of f as a neural network which, given
the input x ∈ X returns f(x,w). We can promptly see that
there exists V such that

V(a, b) = V(f) =
∫ te

0

V (w(t))dt, (3)

Links with Analytic Mechanics
var. mach. learn. mechanics
wi weight particle
ẇi weight variation particle velocity
V constraint penalty potential energy
T temporal smoothness kinetic energy

Table 1: Links between machine learning and analytic me-
chanics.

where

V (w(t)) := c1a(x(t)) · b(y(t)) (1− b(x(t), y(t)))

+ c2

`a∑
κ=1

h(a(xκ), d
a
κ) · δ(t− taκ)

+ c2

`b∑
κ=1

h(b(xκ, yκ), d
b
κ) · δ(t− tbκ).

Of course, no matter what constraints are presented during
the agent’s life, the equation (3) holds true when choosing
the appropriate potential energy.

3 Lagrangian cognitive laws
We propose a unified on-line formulation of learning and in-
ference by introducing concepts that are tightly connected
with analytic mechanics (see Table 1 for a summary of con-
nections). Interestingly, the given formulation is somewhat
inspired to different ways of introducing dissipation in clas-
sic Hamiltonian systems (see e.g. [Wang and Wang, 2012;
Morris, 1986; Baldiotti et al., 2010; Sanjuan, 1995]). We de-
fine cognitive action as the functional

S =

∫ te

0

Lβ dt =
∫ te

0

eβtL dt (4)

where β > 0,
L(w) = T (w)− V (w) (5)

is the Lagrangian, and

T =
1

2

m∑
i=1

µiẇ
2
i (t), (6)

is the cognitive kinetic energy, where µi > 0 is the cogni-
tive mass associated with the particle i. The learning process
consists of finding

w = arg min
w∈W

S(w). (7)

This is a classical problem in variational calculus. Any sta-
tionary point of S satisfies the Euler-Lagrange equations [Gi-
aquinta and Hildebrand, 1996]

d

dt

∂Lβ
∂ẇi

− ∂Lβ
∂wi

= 0.

When considering that Lβ = eβtL we get

βeβt
∂L
∂ẇi

+ eβt
d

dt

∂L
∂ẇi
− eβt ∂L

∂wi
= 0.



Because of the definition of the Lagrangian (5), we get

ẅi + βẇi + µ−1i V ′wi
= 0, (8)

where i = 1, . . . ,m. When adding Cauchy’s conditions,
that correspond with setting wi(0) and ẇi(0), the above La-
grangian cognitive equations drive the evolution of the agent.
It can be proven that when we enforce a strong dissipation
(high values of β) the above equation yields the classic on-
line Backpropagation algorithm, being ηi = 1/(βµi) the
learning rate [Frandina et al., 2013]. Interestingly, the learn-
ing rate turns out to be small for large cognitive masses,
which nicely matches the intuition that large masses move
slowly. In addition, as already pointed out, for this classic
connection to arise, we need to use values of β that are large
enough. In the next section, this is given a foundation using
the Hamiltonian framework extended to dissipation.

4 A dissipative Hamiltonian framework

D1

D2

D3

D4

Figure 1: A sampling of energy balance. The initial value
of the potential energy (inference loss) is transformed into
kinetic energy and is dissipated. At the end, all the initial
inference loss is dissipated.

We can start giving an interpretation of the agent evolution
as follows. From equation (8) we have

ẇi · ẅi + βiẇ
2
i + µ−1i V ′wi

· ẇi = 0

from which
m∑
i=1

1

2
µi

∫ te

0

d

dt
ẇ2
i dt+

m∑
i=1

µi

∫ te

0

βẇ2
i dt

+

m∑
i=1

∫ te

0

V ′wi
ẇidt = 0.

Of course, we have

dV (w(t))

dt
=

m∑
i=1

V ′wi
ẇi +

∂V

∂t
.

Then, let us define

D =

m∑
i=1

βẇ2
i (9)

and

D(t) =
∫ t

0

D(w(θ))dθ. (10)

This is the dissipated energy over [0, te]. When considering
definition 6, we get∫ te

0

(
dT (w(t))

dt
+
dV (w(t))

dt
+
dD(t)
dt

)
dt =

∫ te

0

∂V

∂t
dt.

In case ∂V
∂t = 0 we end up into the following principle of

conservation of cognitive energy

d(T + V +D)
dt

= 0 (11)

that is the cognitive energy

E = T + V +D
is conserved during the agent’s life. In Fig. 1 we can quickly
grasp the meaning of the energy invariance. Basically, as
time goes by, the potential V is partly transformed into ki-
netic energy and is partly dissipated. It is easy to see that
the kinetic energy vanishes as te → ∞. If, by contradiction
limte→∞ T (w(t)) > K > 0 then, there exists t such that

D =

∫ te

0

βẇ2dt >

∫ te

t

βẇ2dt

> K(te − t)
and, therefore limte→∞D = ∞, from which we conclude
that the kinetic energy vanishes necessarily. If the potential
energy (loss term) is time-dependent (injection of stimulus)
then we have the more general conservation law

dE
dt

=
∂V

∂t
. (12)

This tells us that the cognitive energy E is constant whenever
there is no injection of stimuli, but as the agent reacts to a
new constraint there is change of cognitive energy, which is
partially dissipated and transformed into kinetic energy.

INFERENCE
The proposed framework places learning and inference
in exactly the same framework. In the example given in
Section 2, the given constraints are properly expressed by the
corresponding potential energy and the weights (particle po-
sition) evolves following the general conservation principle
of equation (12). Now, suppose that we communicate to the
agent the additional granule of knowledge

∀x, ∀y : C(x) ∧ C(y)⇒ D(x, y)

and that we want the agent to infer the truth of predicate

(¬B(x, y) ∧D(x, y)) ∨ (B(x, y) ∧ ¬D(x, y))⇒ A(x).

We can convert this predicate to the correspondent real-
valued function as shown in Section 2 and check it accord-
ingly 1. Of course, while some constraints are given and

1You can perform this kind of learning and
inference on batch-mode using the simulator at
https://sites.google.com/site/
semanticbasedregularization/home/software.



are responsible of the learning dynamics (12), others are
only used for inference. This is somewhat coherent with the
scheme proposed in ([Diligenti et al., 2012]). A detailed de-
scription of the inferential mechanisms is shown in [Gori and
Melacci, 2013], even though kernel based representations are
used instead of neural-like models like those considered in
this paper. However, the most remarkable difference is that
the learning process described in this paper takes place fully
on-line. This way of inferring new constraints is different to
nowadays approaches of collective classification, since the in-
ference relies on the developed weights exactly like in classic
on-line backpropagation.

5 Discussion
The cognitive laws formulated in this paper can be thought of
as a re-statement of variational approaches to learning, like
the one recently proposed in [Gnecco et al., 2013]. There
is, however, a fundamental difference that involves the cru-
cial role of time, which is in fact what gives rise to the uni-
fied on-line learning and inferential scheme. Now, as already
pointed out, the stationary points of (8) are those for which
∇wV = 0, which clearly indicates the limitations of cogni-
tive systems that are stressing the dissipation. As pointed out
for the case of supervised learning, large values of β lead to
a stochastic gradient descent, but this property holds in gen-
eral. While this is a nice landing in a known planet, there
is still the problem of local minima of the potential energy.
Interestingly, equation (8) is a damping oscillator, which can
get rid of suboptimal minima energy configuration when the
dissipation parameter β is small. An additional role is played
by the injection of noise, which leads to the Langevin equa-
tion. In particular, there is a nice duality with the dynam-
ics of Brownian particles, which are active in the sense that
they take up energy from the environment [Schweitzer, 2000;
Ebeling and Schweitzer, 2001]. The interpretation by the
Fokker equation might be very interesting to gain a prob-
abilistic understanding of the learning process. Alternative
intriguing connections arise when invoking the extension of
the Cognitive Action as defined in this paper in the quantum
framework as early pointed by R. Feyman in his Ph.D. the-
sis [Feyman, 1942]. Finally, regardless of the development of
the idea sketched in this paper, the remarkable novelty is in
the way we seek for optimal cognitive configurations by the
proposed on-line scheme, which can be thought of as laws
of Nature. While there is a weak connection with simulated
annealing and related global optimization schemes, the equa-
tions (8) are truly embedded in the environment and, there-
fore, they lead naturally to on-line learning. This seems to fit
the growing call for life-long learning models, where a truly
intelligent agent should be capable of learning online from
a lifetime of raw sensorimotor experience (see the AAAI-
2011 Workshop on lifelong learning from sensorimotor ex-
perience).
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