Inference, Learning and Laws of Nature

Salvatore Frandina¹ Marco Gori¹ Marco Lippi¹ Marco Maggini¹ Stefano Melacci¹

¹University of Siena, Italy

NeSy' 13 Ninth International Workshop on Neural-Symbolic Learning and Reasoning IJCAI-13

Outline

- Inference and Learning
- The Cognitive Laws

Variational Laws of Nature

- The Lagrangian Cognitive Laws
- Example of potential energy
- The Lagrangian Cognitive Laws
- A dissipative Hamiltonian Framework

Bridging Logic and Perception

Summary

Bridging Logic and Perception

Inference and Learning

Inference and Learning as cognitive processes

- Inference represents the deductive ability to derive the logical conclusion from a set of premises.
- Learning is the inductive ability to acquire, modify and reinforce knowledge from a set of observed data.
- Human decision mechanisms exploit both these abilities to take decisions.

Introduction	
0000	

Summary

Bridging Logic and Perception

Inference and Learning

We need to unify inference and learning

- Real-world problems are complex and uncertain.
- Complexity can be handled by logic theory.
- Uncertainty can be handled by probability theory.

Introduction	Variational Laws of Nature	Summary	Bridging Logic and Perception
Inference and Learning			
Toward a unif	ied framework		

- Historically ...
 - Inference is framed into logic formalism whereas the process of learning is addressed by statistical approaches.
- Nowadays...
 - Unification of inference and learning leads to the framework of probabilistic reasoning.
- For neural networks, the neural symbolic integration is well studied but it lacks of solid mathematical foundations like for probabilistic reasoning.

- We replace the focus on probabilistic reasoning with cognitive laws.
- The human decision mechanisms may be better understood by means of the variational laws of Nature.
- There is a strong analogy between learning from constraints and analytic mechanics.

Example

An agent lives in the environment and behaves following laws like those governing a particle subject to a force field.

- The formulation of the problem in terms of cognitive laws leads to a natural integration of inference and learning.
- An agent continuously interacts with the environment and receives stimuli expressed in terms of constraints among set of tasks.
- In our context, the reaction of an agent to the stimuli follows the laws emerging from stationary points of a cognitive action functional.
- In analytic mechanics, the motion of particles subject to a force field follows the minimization of an action functional.

Bridging Logic and Perception

The Lagrangian Cognitive Laws

How are Machine Learning and Analytic Mechanics related?

Ма	Machine Learning \longleftrightarrow Analytic Mechanics			
variable	machine learning	analytic mechanics		
Wi	weight	particle position		
Ŵ _i	weight variation	particle velocity		
V	constraint penalty	potential energy		
Т	temporal smoothness	kinetic energy		
L	cognitive Lagrangian	mechanical Lagrangian		
S	cognitive action	mechanical action		

The Lagrangian Cognitive Laws

Coupled inference and learning mechanism

- A newborn agent begins its life with a given potential energy and evolves by changing its parameters.
- The potential energy is partially transformed into kinetic energy and the rest is dissipated.
- The velocity of weights decreases until the agent ends into a stable configuration.
- The inference and learning process finishes when all the initial potential energy is dissipated.

Introdu	ction

The Lagrangian Cognitive Laws

Unified on-line formulation of inference and learning

- Consider a multitask problem with q interacting tasks.
- Each task *i* transforms the input *x* ∈ *X* ⊂ *Rⁿ* using weights *W* ∈ *R^m* by means of a function *f* : *X* × *W* → *R*, e.g. a neural network.
- The learning process consists of finding

$$w^* = \arg\min_{w \in W} \mathcal{S}(w),$$

• where the cognitive action is defined as

$$\mathcal{S} = \int_{0}^{t_{e}} \underbrace{e^{eta t} \mathcal{L}}_{\mathcal{L}_{eta} \ ext{Dissipative Lagrangian}} dt \ eta > \mathbf{0},$$

 $[0, t_e]$ is a temporal horizon.

Introduction	Variational Laws of Nature	Summary	Bridging Logic and Perce
	00000000000		

The Lagrangian Cognitive Laws

Constraint penalty and temporal smoothness

- The Lagrangian is defined as $\mathcal{L}(w) = T(w) V(w)$.
- The constraint penalty or potential energy is

$$\mathcal{V}(f) = \mathcal{V}(f(x, w)) = \int_0^{t_e} V(w(t)) dt,$$

eption

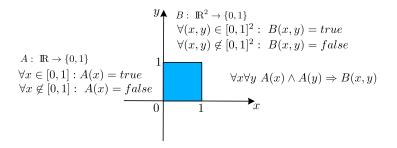
where V(w(t)) collects all the constraints i.e. supervisions, logic rules, etc.

The temporal smoothness or cognitive kinetic energy is

$$T=\frac{1}{2}\sum_{i=1}^m \mu_i \dot{w}_i^2(t),$$

where $\mu_i > 0$ is the cognitive mass associated with the particle *i*.

• A toy example where the cognitive laws unify inference and learning into the same framework.



 We have information about the functions and knowledge on their relationship.

Introduction	Variational Laws of Nature	Summary	Bridging Logic and Perception
Example of potential e	energy		
Perceptive	information		

- $a: R \rightarrow [0, 1]$ and $b: R \times R \rightarrow [0, 1]$ are real-valued functions associated with $A(\cdot)$ and $B(\cdot, \cdot)$.
- We have also supervised data

$$A(\cdot) : \{(x_{\kappa}, d_{\kappa}^{a})\}_{\kappa=1}^{\ell_{a}} \text{ arriving at time } \{t_{\kappa}^{a}\}_{\kappa=1}^{\ell_{a}}$$

and

$$B(\cdot, \cdot) : \left\{ ((x_{\kappa}, y_{\kappa}), d_{\kappa}^{b}) \right\}_{\kappa=1}^{\ell_{b}} \text{ arriving at time } \left\{ t_{\kappa}^{b} \right\}_{\kappa=1}^{\ell_{b}}$$

Introduction	Variational Laws of Nature	Summary	Bridging Logic and Perception
Example of potential energy			

Logical and perceptual potential energy

• The total potential energy is $\mathcal{V}(f) = \int_0^{t_e} V(w(t)) dt$ where

$$V(w(t)) := c_1 \underbrace{a(x(t)) \cdot b(y(t)) (1 - b(x(t), y(t)))}_{\text{logic part}} + \underbrace{c_2 \sum_{\kappa=1}^{\ell_a} h(a(x_{\kappa}), d_{\kappa}^a) \cdot \delta(t - t_{\kappa}^a)}_{\text{perception part}} + \underbrace{c_2 \sum_{\kappa=1}^{\ell_b} h(b(x_{\kappa}, y_{\kappa}), d_{\kappa}^b) \cdot \delta(t - t_{\kappa}^b)}_{\text{perception part}},$$

 c_1 and c_2 are two constants and *h* is a loss function.

Introduction	Variational Laws of Nature	Summary	Bridging Logic and Perception
The Lagrangian Cog	nitive Laws		
Lagrangia	n Cognitive Equation		

- Each stationary point of the cognitive action satisfies the Euler-Lagrange equation $\frac{d}{dt} \frac{\partial \mathcal{L}_{\beta}}{\partial \dot{w}_{i}} \frac{\partial \mathcal{L}_{\beta}}{\partial w_{i}} = 0.$
- Considering that $\mathcal{L}_{\beta} = e^{\beta t} \mathcal{L}$ we get

$$\beta \boldsymbol{e}^{\beta t} \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{w}}_{i}} + \boldsymbol{e}^{\beta t} \underbrace{\left(\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{w}}_{i}} - \frac{\partial \mathcal{L}}{\partial \boldsymbol{w}_{i}}\right)}_{\text{non dissipative term}} = 0.$$

Rearranging the terms, we get the Lagrangian cognitive equation

$$\ddot{w}_i + \beta \dot{w}_i + \mu_i^{-1} V'_{w_i} = 0, \ i = 1, \dots, m.$$

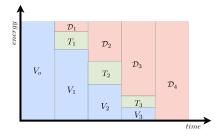
Evolution	of the life of the agent		
The Lagrangian Cog	nitive Laws		
Introduction	Variational Laws of Nature	Summary	Bridging Logic and Perception

- The evolution of the agent is driven by the previous equation paired with Cauchy's conditions w_i(0) and w_i(0).
- The Lagrangian cognitive equation leads to classical online Backpropagation when strong dissipation is enforced.
- For high values of β, the learning rate is η_i = 1/(βμ_i) and the solution of Lagrangian cognitive equation is w_i^{*}|_k = w_i^{*}|_{k-1} − η_i * g_{i,k}.

Frandina S., Gori M., Lippi M., Maggini M., Melacci S. Variational Foundations of Online Backpropagation. 2013, September at ICANN, Sofia, Bulgaria.

Introduction	Variational Laws of Nature	Summary	Bridging Logic and Perception
A dissipative Hamilto	onian Framework		

The evolution of the energy balance



- At the begin the available energy is the potential energy i.e. the inference loss.
- As the time goes by the initial potential energy is continuously transformed into kinetic energy and dissipated energy.
- The inference and learning process ends when all the initial potential energy is dissipated.

Introduction	Variational Laws of Nature	Summary	Bridging Logic and Perception
A dissipative Hamilto	onian Framework		
Cognitive	Energy		

 The agent evolution is interpreted in terms of cognitive energy

$$\mathcal{E} = T + V + \mathcal{D},$$

where the term $\mathcal{D}(t) = \int_0^t D(w(\theta)) d\theta$ is the dissipated energy over $[0, t_e]$.

Multiplying the Lagrangian Cognitive equation by w_i, we get

$$\dot{w}_i\cdot\ddot{w}_i+\beta_i\dot{w}_i^2+\mu_i^{-1}V'_{w_i}\cdot\dot{w}_i=0,$$

from which

$$\int_0^{t_e} \frac{d}{dt} \underbrace{\frac{1}{2} \sum_{i=1}^m \mu_i \dot{w}_i^2}_{T(w(t))} + \underbrace{\sum_{i=1}^m \mu_i \beta \dot{w}_i^2}_{D(w(t))} + \underbrace{\sum_{i=1}^m V'_{w_i} \dot{w}_i}_{\frac{dV(w(t))}{dt} - \frac{\partial V}{\partial t}} dt = 0.$$

Introduction	Variational Laws of Nature	Summary	Bridging Logic and Perception
A dissipative Hamilto	nian Framework		
Conservati	on of Cognitive Energy	y	

• Rearranging the terms, we get the principle of conservation of cognitive energy

$$\int_0^{t_e} \underbrace{\left(\frac{dT(w(t))}{dt} + \frac{d\mathcal{D}(t)}{dt} + \frac{dV(w(t))}{dt}\right)}_{d\mathcal{E}/dt} dt = \int_0^{t_e} \frac{\partial V}{\partial t} dt.$$

- Cognitive energy is constant whenever there is not a new stimulus (i.e. constraints).
- In general, the agent could be provided with:
 - Fixed initial potential energy $\frac{\partial V}{\partial t} = 0$ i.e. fixed knowledge base.
 - Time variant potential energy $\frac{\partial V}{\partial t} \neq 0$ i.e. varying knowledge base.

Introduction	Variational Laws of Nature	Summary	Bridging Logic and Perception
Summary			

- The variational laws of Nature define a unified on-line inference and learning scheme.
- The evolution of the life of the agent is expressed as principle of conservation of energy.
- Future work
 - Deal with the problem of local minima of potential energy.
 - The theory requires extended experimental evaluation.

Bridging Logic and Kernel Machine

- We have developed a theory that bridges logic and kernel machine.
- Semantic Based Regularization is a framework to learning from constraints that unifies inference and learning.
- You can perform this kind of inference and learning on batch-mode using the simulator at https://sites.google.com/site/ semanticbasedregularization/home/software.

Introduction

Bridging Logic and Perception

That's all!