
Extending the Associative Rule Chaining Architecture for Multiple Arity Rules
Nathan Burles, James Austin, and Simon O’Keefe

Advanced Computer Architectures Group
Department of Computer Science

University of York
York, YO10 5GH, UK

{nburles,austin,sok}@cs.york.ac.uk

Abstract
The Associative Rule Chaining Architecture uses
distributed associative memories and superimposed
distributed representations in order to perform rule
chaining efficiently [Austin et al., 2012]. Previous
work has focused on rules with only a single an-
tecedent, in this work we extend the architecture to
work with multiple-arity rules and show that it con-
tinues to operate effectively.

1 Introduction
Rule chaining is a common problem in the field of artificial
intelligence; searching a set of rules to determine if there is
a path from the starting state to the goal state. The Associa-
tive Rule Chaining Architecture (ARCA) [Austin et al., 2012]
performs rule chaining using correlation matrix memories
(CMMs)—a simple type of associative neural network [Ko-
honen, 1972].

1.1 Rule Chaining
Rule chaining can be used to describe both forward and back-
ward chaining, the choice of which to use is application spe-
cific. In this work we use forward chaining, working from the
starting state towards a goal state, although there is no reason
that the architecture could not be used to perform backward
chaining.

In forward chaining, a search begins with an initial set of
conditions that are known to be true. All of the rules are
searched to find one for which the antecedents match these
conditions, and the consequents of that rule are added to the
current state. This state is checked to decide if the goal has
been reached, and if it has not then the system will iterate. If
no further matching rules can be found, then the search will
result in failure.

1.2 Correlation Matrix Memories (CMMs)
The CMM is a simple neural network containing a single
layer of weights. This means that the input and output neu-
rons are fully connected, and simple Hebbian learning can be
used [Ritter et al., 1992].

In this work we use binary CMMs [Willshaw et al., 1969],
a sub-class of CMMs where the weights are binary. Learn-
ing to associate pairs of binary vectors is thus an efficient

operation, and requires only local updates to the CMM. This
is formalised in Equation 1, where M is the resulting CMM
(matrix of binary weights), x is the set of input vectors, y
is the set of output vectors, and n is the number of training
pairs. The CMM is formed by taking the logical OR,

∨
, of

the outer products formed between each of the training pairs.

M =

n∨
i=1

xiy
T
i (1)

A recall operation can be performed as a matrix multipli-
cation between a transposed input vector and the CMM. This
results in a non-binary output vector, to which a threshold
function f must be applied in order to produce the final bi-
nary output vector, as shown in Equation 2.

y = f(xTM) (2)

Using the fact that the input vector contains only binary
components, this recall operation may be optimised. To cal-
culate the jth bit of an output vector when performing a matrix
multiplication, one finds the vector dot product of the input
vector x and the jth column of the matrix M. This vector dot
product is defined as

∑n
i=1 xiMj,i, where Mj,i is the value

stored in the jth column of the ith row of the CMM M. As
x is known to be a binary vector, it is clear that the result of
this dot product is equal to the sum of all values Mj,i where
xi = 1, as shown in Equation 3.

yj = f

 ∑
i(xi=1)

Mj,i

 (3)

The choice of which threshold function (f ) to apply de-
pends on the application and the data representation used.
When storing fixed-weight vectors, the L-max threshold has
been shown to be effective [Austin, 1996]. Alternatively,
when using Baum’s algorithm to generate vectors, the L-wta
threshold has been shown to increase a CMM’s storage ca-
pacity [Hobson and Austin, 2009]. When superimposed vec-
tors are used, as they are in ARCA, the selection of threshold
function is limited to Willshaw thresholding, where any out-
put bit with a value at least equal to the trained input weight
is set to one [Willshaw et al., 1969].



a

b

c

d

e

f

r1

r2

r3

r4

r5

Figure 1: An example tree of rules with a maximum branch-
ing factor of 2. Each input token causes at least 1 and at most
2 rules to fire.

1.3 Associative Rule Chaining
The Associative Rule Chaining Architecture uses distributed
representations [Austin, 1992] to allow superposition of mul-
tiple states in a single vector, while also providing more effi-
cient memory use and a greater tolerance to faults than a local
representation [Baum et al., 1988]. As an example, the super-
position of two distributed vectors {10100} and {10010}
is the vector {10110}.

ARCA performs rule chaining using superimposed repre-
sentations, and hence reduces the time complexity of a tree
search by searching an entire level of the tree in a single oper-
ation. A traditional method such as depth-first search would
search each rule in turn, resulting in a time complexity of
O(bd), where b is the branching factor, and d is the depth of
the tree. By allowing superposition of states, ARCA reduces
this to O(d)—considering the tree of rules in Figure 1 as an
example, if presented with an input a, both rules r1 and r2 are
considered simultaneously. When the system iterates the next
level of rules are then searched concurrently—r3, r4, and r5.

Training
ARCA separates the antecedents and consequents of a rule
into two CMMs using a unique “rule vector” that exists in a
different vector space to the tokens.

The antecedent CMM associates the antecedents of each
rule with its rule vector—for example a : r1. The rule will
then fire if its antecedents are present during a later recall.

The consequent CMM then associates each rule with the
consequents of that rule. In order to maintain separation be-
tween multiple, superimposed branches during a recall this
requires a slightly more complex method of training. Firstly
we create a tensor, or outer, product between the rule vector
and the consequents of a rule—represented as r1 : b. We pro-
ceed by “flattening” this tensor product, in a row-major order,
with the result being a single vector with a length equal to the
product of the token and rule vector lengths. The rule vector
can now be associated with this “flattened” tensor product,
and stored in the consequent CMM—essentially this stores
r1 : (b : r1). This means that recalling a rule from the con-
sequent CMM will produce a tensor product that contains the
output tokens bound to the rule that caused them to fire.

It should be noted that, depending on the application, it
may be possible and appropriate to prune the rule tree prior
to training the ARCA network. Reducing the number of rules
in this fashion will help to reduce the memory requirement of

Token Binary vector Rules

a 1001000 r1 a→ b
b 0100100 r2 a→ c
c 0010010 r3 b→ d
d 1000001 r4 c→ e
e 0101000 r5 c→ f
f 0010100 r6 a ∧ b→ g
g 1000010 r7 a ∧ d ∧ g → h
h 0100001 r8 a ∧ c ∧ d→ f

Table 1: An example set of tokens with a binary vector allo-
cated to each, and the set of rules used in examples.

the system, however will have little effect on its operation.

Recall
Figure 2 shows a single pass through the ARCA system—
searching one level of the tree. An input state is initialised
by forming TPin—the tensor product of any input tokens (in
this case a) with a rule vector (r0).

To determine which of the rules are matched by our input
tokens, we recall each column of this tensor product in turn
from the antecedent CMM. Each resulting vector is used as
a column in a new tensor product—TPrule. These columns
may contain a number of superimposed vectors, representing
any rules which fired.

In order to finish this pass through ARCA, we must now
find the consequents of any rules which were matched. To do
this, we recall each column of TPrule from the consequent
CMM. Due to the way this second CMM is trained, the result
of each recall is a “flattened” tensor product containing rules
bound to output tokens—these can be simply reformed to re-
cover a number of tensor products, TPout. To find our final
result, TPsum, we can sum these tensor products and apply a
threshold at a value equal to the weight of a rule vector.

2 Multiple Arity Rules
In some cases, allowing only rules with a single antecedent
may be sufficient. In complex rule chaining systems or appli-
cations such as feature matching, however, rules with more
than one antecedent—multiple arity—may be necessary.

Rules with different arities cannot be stored in the same
CMM, due to the operation of Willshaw’s threshold function
and the relaxation ability of CMMs. Table 1 assigns a binary
vector to a number of tokens used in our continuing example,
with a vector length of 7 and weight of 2.

We can demonstrate this issue by considering a system
trained with the example rules r1 to r6, shown in Table 1.
Upon presentation of a vector containing both a and b
{1101100} we require the system to match every rule that
contains a or b in the antecedents: r1, r2, r3, and r6. To match
the single-arity rules correctly the threshold value used must
be equal to the weight of a single input vector, a value of 2.

Using a threshold value of only 2, however, means that pre-
sentation of a vector containing only a will match every rule
that contains a in the antecedents: r1, r2, and r6. This oc-
curs because of the associative memory’s ability to relax and



TPin

r0

a

r0

a

Recall from
antecedent CMM

TPrule

r0

r 1
∨
r 2

r0

r 1
∨
r 2

R
ec

al
lf

ro
m

co
ns

eq
ue

nt
C

M
M

TPout (2 CMMs)

r 1

b

r 2

c

r 1

b

r 2

c

r 1

b

r 2

c

r 1

b

r 2

c

S
um

th
en

th
re

sh
ol

d TPsum

r 1

b

r 2

c

r 1

b

r 2

c

Figure 2: A visualisation of one iteration of the rule chaining process within ARCA. The process is initialised by creating a
tensor product, TPin, binding the input tokens (in this case a) to a rule vector (r0). Each column of this tensor product is then
recalled in turn from the antecedent CMM, to form a new tensor product, TPrule, containing the rules which have fired. Each
column of TPrule can then be recalled in turn from the consequent CMM, resulting in a number of output tensor products
(TPout—one tensor product for every non-zero column of TPrule). These output tensor products can be summed, to form a
non-binary CMM, before a threshold is applied using a value equal to the weight of a rule vector to form TPsum. The recall
can continue in the same fashion, using TPsum as the new input tensor product.

recognise partial inputs. In this case, however, it is undesir-
able behaviour as we only wish to match those rules for which
all antecedents are present. Setting a threshold to resolve this
case is impossible, as any value allowing the single-arity rules
to match will also allow the 2-arity rule to match.

2.1 Training
One possible solution for this problem is to use arity net-
works, introduced in [Austin, 1996] and shown in Figure 3.
Under this scheme, multiple distinct ARCA sub-networks
are created—one for each arity of rules used in the system.
Each rule is then trained into the correct n-arity ARCA sub-
network for the number of tokens in its antecedent.

Although this scheme will help in many cases, it still does
not fully solve the problem. Consider the 3-arity example
rules given in Table 1. When recalling rule r7 the superim-
posed tokens will form a vector {1001011} with a weight
of only 4, thus the threshold for the 3-arity network must be
set as 4.

For rule r8, the superposition of input tokens forms a vector
{1011011}. It can clearly be seen that this vector is very
similar to that of rule r7, with the addition of only a single bit.
Unfortunately, we have already determined that the threshold
used with the 3-arity network must be at most 4. We can see,
therefore, that presentation of the rule r7 inputs (a ∧ d ∧ g)
will cause rule r8 to match incorrectly.

In order to resolve this we propose to modify the networks
such that instead of separating rules by arity, they separate
the rules by the combined weight of their superimposed an-

tecedent tokens. This will operate in the same way as shown
in Figure 3, but each ARCA network will be identified by
the total weight of the superimposed antecedent tokens rather
than by the number of antecedent tokens.

When training a rule its antecedents are first superimposed,
and the weight of this vector determines in which of the
ARCA networks the rule should be trained. This means that
the threshold value for each ARCA network is well defined,
while still allowing for relaxation if this is required by the
application (by reducing this threshold value).

2.2 Recall
A block level diagram of the recall operation is shown in Fig-
ure 3. To initialise the recall any input tokens are superim-
posed, for example a, d, and g. The superimposed input vec-
tor is then recalled from each of the individual ARCA net-
works. As each ARCA network is distinct, this recall may
happen in parallel where this is supported by the infrastruc-
ture. Given this particular input, the rules r1 and r2 will
match in the weight-2 ARCA network, and r7 will match in
the weight-4 ARCA network. Rule r8 will not be matched,
as it is stored in the weight-5 ARCA network and so requires
all 5 set bits to be present in the input.

After recall from each of the ARCA networks, the result
is a number of vectors containing the consequent tokens for
each of the matched rules. In order to be able to iterate we
can simply superimpose these outputs.

Testing for search completion can operate in the same fash-
ion as the single-arity ARCA [Austin et al., 2012]. If the su-



Superimposed
input tokens

ARCA
(arity 1)

ARCA
(arity 2)

. . .

ARCA
(arity n)

Output tokens
(arity 1)

Output tokens
(arity 2)

. . .

Output tokens
(arity n)

All output
tokens

O
R

L
og

ic
al

Figure 3: Using arity networks with ARCA. The input tokens are recalled from each arity network in turn, and the output tokens
from each network are all superimposed to form the final result.

perimposed output consists solely of zeros then no rules have
been matched and hence the search is completed without find-
ing a goal state, if it is not empty then we must check whether
all of the goal state’s consequent tokens are present in the
output—if they are, then the search has been successful.

3 Experiments
In order to show that our proposed solution is effective we im-
plemented it using the Extended Neural Associative Memory
Language (ENAMeL), a domain specific language created to
simplify the development of applications using binary vectors
and CMMs.

We generated a tree of rules, with a depth of 8 and a branch-
ing factor of 3 (where the number of children of a given node
was uniformly randomly sampled from the range [1, 3]). The
number of tokens in the antecedent of each rule, n, was ran-
domly sampled from the range [1, 5], allowing a rule to share
at most dn/2e antecedent tokens with any others. An exam-
ple of this is shown in Figure 4. We selected these parameters
to ensure that this experimentation would remain computa-
tionally feasible.

In the worst case these parameters will generate 38 rules.
To ensure that any potential recall errors were not caused by
undesired overlap between vectors, we decided to use a vec-
tor length of 5120 and weight of 10—extrapolating from re-
sults obtained during previous work [Austin et al., 2012], this
should comfortably allow over 10000 rules to be stored.

We then trained the multiple ARCA systems with each
of the rules, generating a code for each unique token using
Baum’s algorithm [Baum et al., 1988]. As we wished to test
the correct operation and reliability of the multiple ARCA
system, and not ARCA itself, we proceeded as follows:

1. Form the superposition of all tokens in the root of the
rule tree to use as the starting state.

2. Recall the current state from each of the ARCA net-
works in turn, comparing the result to that which was

trained—if the result differs from the expected value,
then record the error.

3. Superimpose the results from each of the ARCA net-
works to form a new current state, and repeat from the
previous step until all 8 levels of the tree have been
searched.

This experimental design meant that if a recall error did oc-
cur, we would be able to easily determine the point of failure.
We ran this experiment 100 times, using a different random
seed each time, to ensure that different rule trees were used.

Our results showed that segregating rules by the weight of
their superimposed antecedent tokens is effective, and allows
correct operation of the rule chaining system in the presence
of multiple-arity rules. In all of the experimental runs the
recall was successful, with each ARCA system’s output con-
taining the correct tokens and no others.

In one of the runs, however, the output of the weight-40
ARCA network after the third iteration contained 8 set bits
in addition to those which were expected. Upon iterating,
this did not cause the erroneous recall of further incorrect
bits, however with more iterations this could potentially oc-
cur again and cause an incorrect recall. The weight-40 ARCA
network stored rules with 4 antecedent tokens that have no
overlap when superimposed. Upon further analysis of the ran-
domly generated rule tree, it seems that a disproportionately
high number of rules were generated with this configuration.
This caused the CMMs to become saturated, which means
that too many bits in the matrix were set. This can result in
erroneous bits being present after a recall operation, due to
interference within the matrix.

4 Conclusions and Further Work
This paper has described an important extension to the
ARCA, allowing it to perform forward chaining using rules
that are not limited to a single antecedent token. We have
shown that our proposed solution operates correctly, and is
able to successfully store and recall large sets of rules.



a ∧ b

a ∧ c ∧ d ∧ e ∧ f

c

d ∧ g ∧ h ∧ i

g

j ∧ k ∧ l

j ∧m

k

n

n ∧ o ∧ p ∧ q ∧ r

o ∧ p ∧ s ∧ t ∧ u

s ∧ v ∧ w ∧ x ∧ y

v

w ∧ z ∧ α ∧ β

Figure 4: An example tree of rules with a maximum branching factor of 3. Each set of input tokens causes at least 1 and at
most 3 rules to fire. Each rule has between 1 and 5 antecedents and consequents and shares at most dn/2e antecedent tokens
with other rules, where n is the number of antecedent tokens of a given rule.

Our initial experimentation was limited to testing only trees
of rules with a depth of 8 and branching factor of 3. Having
shown that the system is able to operate successfully, a full in-
vestigation of these parameters can be undertaken in order to
understand the effect that they have on network operation and
capacity. Further to this, experimenting with these param-
eters will also allow a sensitivity analysis to be performed.
This is important given the random nature of our experimen-
tal inputs, and the potentially large variance between sets of
vectors that can occur for a number of reasons—such as the
vector generation algorithm used.

In the experimentation we chose to use a vector length of
5120 and weight of 10, as we extrapolated from previous re-
sults to determine that this should provide ample capacity. All
previous results used rules containing a single token in the an-
tecedent and consequent, so they cannot necessarily be used
to predict the capacity when storing rules with greater arities.
As the number of tokens involved increases, so do the num-
ber of bits set when training a rule—leading to quicker CMM
saturation, as we found in one of the experimental runs.

Further investigation into the effect of changing parame-
ters such as the vector length and weight is required, in order
to understand how the capacity of each of the ARCA sub-
networks changes as well as the memory requirement for the
complete system.

Finally, further work is required to understand how the net-
work reacts when reaching saturation; in the experiments per-
formed so far a number of the ARCA sub-networks remained
unused, as the weight of the superimposed antecedent tokens
was never equal to their value. It may be possible to allocate
binary vectors using a different algorithm, in order to either
spread the rules more evenly through the sub-networks, or
possibly to guarantee that some of them are unnecessary.

References
[Austin et al., 2012] James Austin, Stephen Hobson, Nathan

Burles, and Simon OKeefe. A rule chaining architecture
using a correlation matrix memory. Artificial Neural Net-
works and Machine Learning–ICANN 2012, pages 49–56,
2012.

[Austin, 1992] James Austin. Parallel distributed computa-
tion in vision. In Neural Networks for Image Processing
Applications, IEE Colloquium on. IET, 1992.

[Austin, 1996] James Austin. Distributed associative mem-
ories for high-speed symbolic reasoning. Fuzzy Sets and
Systems, 82(2):223–233, 1996.

[Baum et al., 1988] Eric B Baum, John Moody, and Frank
Wilczek. Internal representations for associative memory.
Biological Cybernetics, 59(4):217–228, 1988.

[Hobson and Austin, 2009] Stephen Hobson and Jim Austin.
Improved storage capacity in correlation matrix memories
storing fixed weight codes. Artificial Neural Networks–
ICANN 2009, pages 728–736, 2009.

[Kohonen, 1972] Teuvo Kohonen. Correlation matrix mem-
ories. Computers, IEEE Transactions on, 100(4):353–359,
1972.

[Ritter et al., 1992] Helge Ritter, Thomas Martinetz, Klaus
Schulten, Daniel Barsky, Marcus Tesch, and Ronald Kates.
Neural computation and self-organizing maps: an intro-
duction. Addison Wesley Longman Publishing Co., Inc.,
1992.

[Willshaw et al., 1969] David J Willshaw, O Peter Buneman,
and Hugh Christopher Longuet-Higgins. Non-holographic
associative memory. Nature, 1969.


	Introduction
	Rule Chaining
	Correlation Matrix Memories (CMMs)
	Associative Rule Chaining

	Multiple Arity Rules
	Training
	Recall

	Experiments
	Conclusions and Further Work

