Learning Multi-Sensory Integration with Self-Organization and Statistics

Johannes Bauer, Stefan Wermter

http://www.informatik.uni-hamburg.de/WTM/

The Superior Colliculus

The Superior Colliculus

Johannes Bauer

What's Interesting About That?

 ρ : input stimulus a_k : activity of i_k ρ_l : preferred value of o_l

 ρ : input stimulus a_k : activity of i_k ρ_l : preferred value of o_l

6

$$P(\rho = \rho_l \mid a_1, a_2, \dots, a_m)$$

Johannes Bauer

 ρ : input stimulus a_k : activity of i_k ρ_l : preferred value of o_l

$$P(\rho = \rho_l \mid a_1, a_2, \dots, a_m) \sim \frac{P(a_1, a_2, \dots, a_m \mid \rho = \rho_l)}{P(a_1, a_2, \dots, a_m)} P(\rho = \rho_l)$$

Johannes Bauer

 ρ : input stimulus a_k : activity of i_k ρ_l : preferred value of o_l

$$P(\rho = \rho_l \mid a_1, a_2, ..., a_m) \sim \frac{\prod_k P(a_k \mid \rho = \rho_l)}{\prod_k P(a_k)} P(\rho = \rho_l)$$

Noise independent.

 ρ : input stimulus a_k : activity of i_k ρ_l : preferred value of o_l

$$P(\rho = \rho_l \mid a_1, a_2, ..., a_m) \sim \frac{\prod_k P(a_k \mid \rho = \rho_l)}{\prod_k P(a_k)}$$

Noise independent.
 ρ unif. dist.

 ρ : input stimulus a_k : activity of i_k ρ_l : preferred value of o_l

$$P(\rho = \rho_l \mid a_1, a_2, ..., a_m) \sim \prod_k P(a_k \mid \rho = \rho_l)$$

Noise independent.
 ρ unif. dist.

Johannes Bauer

$$P(\rho = \rho_l \mid a_1, a_2, \dots, a_m) \sim \prod_k P(a_k \mid \rho = \rho_l)$$

Johannes Bauer

Multi-Sensory Integration through Self-Organization and Statistics

11

can be adapted SOM-like

Assume
$$P(a_k \mid \rho = \rho_j) = \frac{on_{j,a}[a_k]}{\sum on_{j,a}}$$
, then
 $P(\rho = \rho_j \mid a_1, a_2, ..., a_m) \sim \prod_l \frac{on_{j,l}[a_l]}{\sum on_{j,l}}$

Johannes Bauer

Comparison to regular SOM

Comparison to regular SOM

Johannes Bauer

The Network in Action

The Network in Action

Performance

The network integrates multi-sensory information.

The network replicates biological phenomena.

Conclusion

presented a novel self-organizing ANN algorithm which

- Iearns to combine information near-optimally
- shows spatial principle and MLE-like behavior
- shows benefit of multisensory integration
- Iearns to compute a PDF for latent variables
- is unsupervised
- has few inbuilt assumptions

The End

References:

[1]: Stanford, T. R., Quessy, S., Stein, B. E., Jul. 2005. *Evaluating the operations underlying multisensory integration in the cat superior colliculus.* The Journal of Neuroscience 25 (28), 6499–6508.

[2]: Alais, D., Burr, D., Feb. 2004. *The ventriloquist effect results from Near-Optimal bimodal integration*. Current Biology 14 (3), 257–262.

[3]: Bauer, J. and Wermter, S., Sept. 2013. Self-organized neural learning of statistical inference from high-dimensional data. In: Proceedings of the International Joint Conference on Artificial Intelligence 2013.

Johannes Bauer

Performance – Behavioral*

*simulation parameters differ from rest of talk.

