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What’s Interesting About That? 
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? 

Place in SC Meaning of Input 



The Algorithm[3] 
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𝜌: input stimulus 
𝑎𝑘: activity of 𝑖𝑘 
𝜌𝑙: preferred value of 𝑜𝑙 
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The Algorithm[3] 
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Assume 𝑃 𝑎𝑘 ∣ 𝜌 = 𝜌𝑗 = 
𝑜𝑛𝑗,𝑎[𝑎𝑘] 

∑𝑜𝑛𝑗,𝑎
, then 

𝑃 𝜌 = 𝜌𝑗 ∣ 𝑎1, 𝑎2, … , 𝑎𝑚 ∼ 
𝑜𝑛𝑗,𝑙 𝑎𝑙
∑𝑜𝑛𝑗,𝑙

𝑙

 

can be adapted SOM-like 
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Comparison to regular SOM 
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Performance 
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The network replicates biological phenomena. 

Inverse Effectiveness Spatial Principle 

The network integrates multi-sensory information. 

errors given ‘visual’ input errors given ‘auditory’ input errors given multi-sensory input 
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presented a novel self-organizing ANN algorithm which 

 learns to combine information near-optimally 

 shows spatial principle and MLE-like behavior 

 shows benefit of multisensory integration 

 learns to compute a PDF for latent variables 

 is unsupervised 

 has few inbuilt assumptions 

Conclusion 
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The End 
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Performance – Behavioral* 
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auditory 

𝜎𝑎 = 4.594 ∙ 10
−4 

𝑝𝑎 = 1.680 ∙ 10
−1 

visual 

𝜎𝑣 = 1.061 ∙ 10
−4 

𝑝𝑣 = 8.272 ∙ 10
−1 

multi-sensory 

𝜎𝑚 = 8.153 ∙ 10
−5 

optimal 

𝜎𝑚,𝑜𝑝𝑡 =
1
1

𝜎𝑣
2+
1

𝜎𝑎
2

≈ 4.185 ∙ 10−5 

𝑝𝑎,𝑜𝑝𝑡 ≈ 1.876 ∙ 10
−1 

𝑝𝑣,𝑜𝑝𝑡 ≈ 8.124 ∙ 10
−1 

 

*simulation parameters differ from rest of talk. 


