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Abstract

We present a model of unsupervised learning in the
hybrid SAL (Synthesis of ACT-R and Leabra) archi-
tecture. This model follows the hypothesis that higher
evaluative cognitive mechanisms can serve to provide
training signals for perceptual learning. This addresses
the problem that supervised learning seems necessary
for strong perceptual performance, but explicit feed-
back is rare in the real world and difficult to provide
for artificial learning systems. The hybrid model cou-
ples the perceptual strengths of Leabra with ACT-R’s
cognitive mechanisms, specifically its declarative mem-
ory, to evolve its own symbolic representations of ob-
jects encountered in the world. This is accomplished
by presenting the objects to the Leabra visual system
and committing the resulting representation to ACT-R’s
declarative memory. Subsequent presentations are ei-
ther recalled as instances of a previous object category,
in which case the positive association with the repre-
sentation is rehearsed by Leabra, or they cause ACT-
R to generate new category labels, which are also sub-
ject to the same rehearsal. The rehearsals drive the net-
work’s representations to convergence for a given cate-
gory; at the same time, rehearsals on the ACT-R side re-
inforce the chunks that encode the associations between
representation and label. In this way, the hybrid model
bootstraps itself into learning new categories and their
associated features; this framework provides a poten-
tial approach to solving the symbol grounding problem.
We outline the operations of the hybrid model, evaluate
its performance on the CU3D-100 (cu3d.colorado.edu)
image set, and discuss further potential improvements
to the model, including the integration of motor func-
tions as a way of providing an internal feedback signal
to augment and guide a purely bottom-up unsupervised
system.

Introduction
Dynamic environments present a major challenge for object
recognition systems trained on static datasets. Because tra-
ditional object recognition techniques depend on a training
regime in which the ground truth is known, they do not al-
low the system to dynamically develop its own categories
of classification based on environmental information. As an
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

alternative to classifiers that employ traditional supervised
machine learning algorithms, we present an approach based
on a hybrid framework that incorporates two separate cog-
nitive architectures: ACT-R and Leabra. This framework,
which we call SAL (Synthesis of ACT-R and Leabra) com-
bines Leabra’s strength as a perceptual neural network with
ACT-R’s symbolic and sub-symbolic theory of declarative
memory and procedural action. Crucially, we demonstrate
mutually reinforcing learning in the hybrid SAL framework,
which allows the SAL model to dynamically discover and
learn representations of novel objects.

ACT-R
ACT-R is a production rule-based cognitive architecture
which implements the rational analysis theory developed by
Anderson (Anderson and Lebiere 1990), (Anderson et al.
2004). ACT-R separates functional elements such as declar-
ative memory, visual processing, and motor control into
modules, which in turn expose constructs called “buffers” to
the core procedural module. Event execution is dictated by
the consequents of production rules, which fire when their
antecedent conditions represented over the set of buffers are
met. In the event that more than one rule’s antecedents are
satisfied, the production with the highest utility is selected.
The utility of a production is learned according to whether a
production helps the model achieve its goals, and is back-
propagated through time up the production chain, so that
rules closer to the goal are rewarded more, while rules more
temporally distant from the goal receive proportionately less
reward (Anderson and Fu 2004).

Declarative memory
ACT-R stores its declarative memories as “chunks,” struc-
tures containing places (“slots”) to which values (which can
be data objects of any kind, including other chunks) can
be assigned. A request to the declarative memory module
specifies the conditions required for chunk retrieval to occur,
and the module either returns a chunk that corresponds to
those specifications or signals a retrieval failure.

The main quantity which controls retrieval from declara-
tive memory is the chunk’s “activation,” a measure of both
its relevance and activity in memory. The activation Ai is
computed via the equationAi = Bi+Si+Pi+εi, where i is
the index of the given chunk, and Bi, Si, Pi, and εi, are the



base-level activation, the spreading activation, partial match
activation, and noise, respectively. Spreading activation
encodes the strength of association between chunks and is
active only when chunks have other chunks as slot values;
in this model, we do not use spreading activation, so Si = 0
uniformly. Base-level learning encodes the decay of the
chunk’s activation as a function of time according to the
formula Bi = ln

(∑n
j=1 t

−d
j

)
. Here tj is the time since

the jth presentation of the ith chunk, and d is the decay
parameter, which is set to 0.5. This equation captures the
power law dynamics of practice and forgetting. The noise
parameter controls the width of a Gaussian zero-centered
distribution from which the noise is sampled and added
to the activation. In order for a chunk to be successfully
retrieved, its activation must exceed the global retrieval
threshold (RT).

ACT-R supports several retrieval modalities, including
exact matching and partial matching. Exact matching will
only retrieve a chunk if the exact specifications requested
are matched. In many tasks involving continuous values
we may wish to retrieve simply the chunk best matched to
the request. For this purpose, ACT-R implements a partial
matching mechanism. To use partial matching, a metric that
gives the similarity between two chunks as a real number
between -1 and 0 (with 0 being most similar and -1 being
maximally dissimilar) must be defined on the relevant set
of chunks. Then the partial match activation is computed
as Pi =

∑
kMP × Mik, where MP is a “penalty” paid

by chunks dissimilar to the request specifications, which
weights the similarity metric Mik. The metric gives the
similarity scaled to between 0 and -1 between the value k
in the retrieval specification and the corresponding slot of
chunk i.

Leabra
As described in (Vinokurov et al. 2011), Leabra is a set of al-
gorithms for simulating neural networks (O’Reilly and Mu-
nakata 2000) which combine into an integrative theory of
brain (and cognitive) function. These algorithms serve as
a computational theory of brain (primarily cortical) func-
tion, as the algorithms and their parameterization have been
closely guided by a wide variety of data. Leabra operates
at an intermediate level of detail (e.g., firing-rate coded,
point neurons) to allow modeling effects both down to the
molecular effects (e.g., increased sodium conductances from
pharmacological manipulation) and up to the cognitive level
(e.g., differentially worse performance in the incongruent
condition of the Stroop task).

Leabra simulations have explored numerous neurosci-
entific processes including cognitive control (Herd and
O’Reilly 2006) (O’Reilly and Pauli 2010), visual search
(Herd and O’Reilly 2005), self-directed learning (Herd,
Mingus, and O’Reilly 2010), working memory and exec-
utive function in the prefrontal cortex (Hazy, Frank, and
O’Reilly 2006), and cortical learning (O’Reilly and Mu-
nakata 2002).

Here we used the LVIS (Leabra Vision) model (O’Reilly

et al. 2011). A V1 layer is activated according to a set of
filters for line/edge orientation, length sums, and end stop-
ping. This layer is sparsely connected in a convergent man-
ner to a V4 layer, which in turn is similarly connected to an
IT layer. Connections from V1 to V4, V4 to IT, and IT to
output are allowed to learn using Leabra’s combination of
self-organizing and biologically-realistic error driven learn-
ing. The IT layer plays a key role in shape-based object
recognition which is leveraged by the LVIS model (Riesen-
huber and Poggio 1999). The model learns to categorize 100
types of objects and performs at about 93% on generalizing
novel exemplars into learned categories. For the present ex-
periments, it was trained on 50 of those object classes (the
TRAIN items in the hybrid model), with the remaining 50
reserved as novel (TEST) items.

The SAL Hybrid
The SAL hybrid framework unites Leabra’s detailed
account of bottom-up perception with the high-level
cognitive functionality modeled by ACT-R (for a
full list of applications of ACT-R, see http://act-
r.psy.cmu.edu/publications/index.php). Previous use of
the SAL hybrid is described in (Jilk et al. 2008), in which
an ACT-R/Leabra hybrid model was embedded in an Unreal
Tournament world.

In the current hybrid architecture, we have wrapped the
interaction between ACT-R and Leabra within a leabra-
visual buffer, which uses a socket-based interface for data
exchange. Data received from Leabra is transformed into
ACT-R chunks that become available in the buffer, and
requests to the buffer control Leabra’s operations. The
current implementation of SAL focuses only on vision;
however, the architecture is modular and can be extended
easily to other functionalities such as motor actions.

In the context of the SAL framework, we define a partial
match metric on the distributed representation generated
by Leabra’s model of the inferotemporal cortex (IT). The
IT representation is encoded as a 200-dimensional vector
and the similarity between two vectors is defined using the
cosine metric. That is,

Mik =

(
~Vi · ~Vk
~Vi

2 ~Vk
2

)
− 1 = cos2(θ)− 1 (1)

where Vi and Vk represent vectors corresponding to two
different IT representations. This metric produces a value
between 0 and -1 as required by ACT-R.

The Label Generator Model
Setup
Here we present the label generator model implemented in
SAL. The Leabra side of the label generator model consists
of a network trained on 50 (out of 100) randomly chosen
object classes, with the other 50 being held out of training.
The purpose of this method is to establish basic non-random
feature detectors within the network and ensure a reason-
able signal-to-noise ratio in the IT representations. On the
ACT-R side, a model that interfaces with Leabra implements



the cognitive decision procedures involved in learning object
categories. The integrated model proceeds according to the
following logic:
• ACT-R directs Leabra’s visual attention to an image.
• Leabra processes the image and returns the IT representa-

tion.
• ACT-R uses the IT representation as a cue for retriev-

ing an association between the representation and a previ-
ously known label.

• If a known label is successfully retrieved, ACT-R directs
Leabra to train that representation with the retrieved label.

• If retrieval has failed, ACT-R assumes this is a previously
unseen object and generates a label for it. Leabra is then
directed to train on that label as above.
This control flow represents a single iteration of the

model, after which the next image is presented. The pa-
rameters that control the ease of retrieval within ACT-R
are the mismatch penalty (MP) and the retrieval threshold
(RT). For this series of experiments, we set MP = 7 and
RT = −1, and the noise parameter (ANS) was set to
ANS = 0.25. These values of RT and ANS are typical
for many ACT-R models. The parameters MP and RT,
represent a tradeoff between the penalty paid by dissimilar
items and the reduced difficulty of retrieval. In a sense, MP
controls the size of the neighborhood within which similar
representations will converge to a single attractor label,
while RT controls the depth of the “well” of memory out of
which potential matches have to climb to be recalled. In this
case, the value MP = 7 represents a fairly discriminating
model that heavily penalizes dissimilar representations on
recall. Setting RT = −1 represents a fairly low barrier to
retrieval. Correspondibly, the noise parameter ANS may be
seen as characterizing the “fuzziness” of the neighborhood
boundary.

Model Evaluation
The challenge of evaluating the performance of the hybrid
model consists of the fact that no single metric adequately
reflects its activity. Partially this is because within the
context of the model there is no real notion of ground
truth; although we know the object classes presented to the
model, the model dynamically learns their features inde-
pendently of any external feedback. Furthermore, during
the presentation itself, the model can do one of four things:
correctly recall a previously seen object (true positive),
correctly assign a new label to a previously unseen object
(true negative), incorrectly recall a previously seen item
(false positive), and incorrectly generate a new label for a
previously seen object (false negative).

In general, for the purposes of evaluating the model, we
rely on two metrics: the confusion matrix, which gives the
fraction of the time that a given response was recalled for
a given stimulus, and the overall label histogram, which
shows the various labels generated by the model for each
object class. Additionally, we present the trained network
with the original item set on training to measure whether

the Leabra network (standing apart from the ACT-R model)
generates the labels it has been trained on for given stimuli.

Learning in ACT-R With a Fully Trained Network
To test the basic concept of label generation using the hy-
brid model, we began with a fully trained (to the 93% ac-
curacy on the 100-way test mentioned above) Leabra net-
work and allowed the ACT-R model to develop its own la-
bels for Leabra’s representations. Since the IT representa-
tions had converged through network training, they were
essentially identical for all exemplars, so only one exem-
plar per class (selected randomly) was used. The model be-
gan with a block of 5 object classes and the entire block
was presented 25 times, for a total of 125 presentations
per item; presentation order of exemplars within the block
was random. At that point, another block of 5 items was
added, and the presentations were repeated with the 10-item
block for another 25 trials, with the result that every item
in the first block would now have been seen 250 times,
while every item in the new block would have been seen
125 times. This incremental presentation strategy was re-
peated until 25 object classes had been added, for a total
of 125+250+375+500+625 = 1875 trials. The resulting
confusion matrix in Fig. 1 demonstrates that when the IT
representation has converged, ACT-R is extremely good at
sorting objects into self-created categories. Although there
are some shape-based confusions, e.g. globe and skull, they
are very reasonable (IT is sensitive only to shape, not scale,
texture, or orientation). Overall, 18 of 25 object classes are
perfectly recalled, while the rest are mapped identically onto
a pre-existing category.

Simple Random Presentation Schedule
In SAL, the learning process is influenced by both the
global parameters and the presentation schedule. The subset
of items to be presented can be chosen and modified during
the model run time. Initially, we tested the model by running
it on a subset of three randomly chosen categories from
the set of 50 TEST categories. There were 5 exemplars
per category and the model was run for a total of 500
iterations, with each presentation being of a randomly
chosen exemplar of a randomly chosen class. All classes
and exemplars had an equal probability of being chosen.

The confusion matrix in Fig. 2 demonstrates that for
the 3-item case, after 500 iterations the network has
converged on a distinct representation for all three items.
Slight confusions may occasionally arise between object
representations; for example, the sailboat is confused
for the scissors about 2% of the time. The shapes of the
three objects (sailboat, scissors, and tropicaltree) in this
particular instance are sufficiently dissimilar that a model
with a high value for MP will discriminate between them
relatively easily. From Fig. 3, we can also see the labels
most commonly assigned by the integrated model to the
three object categories; although one object category may
be assigned multiple labels, all that matters in the end is that
the representation and the label assignment both converge
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Figure 1: The confusion matrix for the progressive presen-
tation of 25 object classes. Square shade represents fraction
of recalls of object on the x-axis given the object on the y
axis as a stimulus. All recall values in this case are either
0 (white) or 1 (black). Time of first encounter of object in-
creases uniformly along both x and y axes.

on a stable attractor. In the 3-item case shown in Fig. 4, the
network has converged on a set of stable representations.

Staggered Presentation Schedule
To simulate a sort of real dynamic environment in which
agents encounter novel objects in a serial fashion, rather
than all at once, we broke up a set of 15 object classes
into blocks of 3. Each object class was represented by 5
exemplars, and each block of object classes was presented
for 500 iterations, as above. Presentation blocks did not
overlap, and neither declarative memory nor network
weights were reset after each block. As a consequence
of this, object classes presented earlier in time tended to
form more stable attractors in representation space, while
classes presented later in time tended to fall into those
attractors if they already possessed an underlying similarity.
For example in Fig.5, it can be seen that the trafficcone
has fallen into the well-established mailbox representation,
owing to their superficial shape similarity.

Of the 15 items presented in this fashion, 6 are recalled
with 89% accuracy or better upon presentation; furthermore,
the rolltopdesk and the simpledesk are so similar that roll-
topdesk naturally gets folded completely into the simpledesk
object class. Three further items (mailbox, microwave, and
toaster) are recalled correctly 78%, 74%, and 68% of the
time. This accounts for 9 of the 15 items. Of the other
6, trafficcone and turntable collapse completely onto pre-
existing categories, mailbox and motorcycle respectively.
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Figure 2: The confusion matrix for a simple presentation
schedule in which a block of 3 items is presented for a total
of 500 iterations. The arrow shows the increasing direction
of time of introduction from left to right and top to bottom,
i.e. the first object class encountered is scissors, followed by
tropicaltree and sailboat. The model converges quickly on a
stable label assignment for each object class, and recall is at
least 98% accurate.

In both cases, this is due to strong shape similarities; most
mailbox exemplars have a long leg supporting a flared
shape (the box itself), which causes resemblance to the
triangular shape of the trafficcone, while both turntable and
motorcycle exhibit a prominent circular feature. Several
other object classes, including the umbrella and trafficlight
never converge on stable representations.

Fig. 6 shows the labels that were assigned to the various
object classes. As the confusion matrix shows, some of
the object classes create strong attractors into which other
object classes fall; for example, the turntable and the motor-
cycle were both assigned the label 53. Fig. 7 illustrates the
post-test performance of the standalone network. Many of
the representations have converged strongly to a single label.

Discussion
The performance of the hybrid model is strongly impacted
by the order of presentation and the structure of the IT repre-
sentation. As the IT representation encodes only shape fea-
tures in a rotation- and scale- invariant way, similar-looking
objects will collapse onto identical self-generated labels.
This is all the more true as the training regime features no
presentations of negative exemplars; only positive exemplars
are possible under this setup. The order of presentation pri-
marily affects which object classes will serve as the initial
attractors during training.

Nevertheless, the model is able to learn stable representa-
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Figure 4: The correctness of the model is evaluated by
whether the trained network responds with any of the domi-
nant labels (those having counts at least 5 times greater than
the minimum counts associated with the object class) which
ACT-R associated with the object class. In this simple 3-item
case, the network always correctly identifies the sailboat and
scissors, and correctly identifies the tropicaltree 60% of the
time. During the random presentations, the tropicaltree was
seen fewer times, so its label was not as well established.
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Figure 5: The confusion matrix for a staggered presenta-
tion schedule. The arrow shows the increasing direction of
time of introduction from left to right and top to bottom, i.e.
the first object class encountered is scissors, followed by re-
mote, etc., and trafficlight is encountered last. Presentations
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Figure 7: After 500 iterations of training per block of 3 ob-
ject classes, for a total of 15 categories, the network correctly
associates the assigned label with 5 categories 100% of the
time, with another 90% of the time, and with two others 70%
of the time.

tions for a number of successively presented stimuli, provid-
ing evidence that object learning can be bootstrapped from
a basic set of features to a richer one. The representations
are learned without any supervision, allowing the model to
generate its own associations between percept and label. It
would be possible to achieve excellent performance on a
static data set via traditional machine learning techniques
which leverage both a plus phase and a minus phase for
training, but such controlled experimental conditions are not
typically available to agents attempting to navigate a world.
For such autonomous agents within a complex environment
full of possibly unknown object classes, the ability to ground
labels in perceptions of the external world is a great advan-
tage.

One way of breaking the degeneracy between similar ob-
jects involves generating IT representations that contained
additional information, such as size and texture. Another im-
provement would integrate motor information and allow the
model to manipulate presented objects; the success or failure
of manipulation would provide additional information about
the object class. This would even allow for a discrimination
of various subclasses of larger classes, as for example the
class of doorhandles might be differentiated into ones that
can be twisted and ones that can be pushed down. Addition-
ally, metacognitive parameters can be employed to aid in the
judgment of object familiarity (Vinokurov et al. 2011).

Conclusions
We have presented a model for self-supervised learning
of novel object classes within the modular and extensible
SAL framework, which unites the perceptual capabilities of
Leabra’s neural models with the cognitive functionality of
ACT-R. This model provides a basis for implementing un-
supervised learning and symbol-grounding in dynamic cir-
cumstances by agents navigating through and operating in
such environments.
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