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Key Question of Al:

How to Get Knowledge into Computers?

Hand coding Supervised ML
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How can we mix these two extremes?

Neural-symbolic community (and others) have
looked at ways to do so
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e How can we go beyond teaching
machines solely via 1/0 pairs?

‘advice giving’

e How can we understand what an ML
algorithm has discovered?

‘rule extraction’
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e Explanation-Based Learning (1980’s)

e Knowledge-Based Neural Nets (1990’s)
e Knowledge-Based SVMs (2000’s)

e Markov Logic Networks (2010’s)
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Explanation-Based Learning
(EBL) - my PhD Years, 1983-1987

e The EBL Hypothesis

By understanding w/1y an example is a member
of a concept, can learn essential properties of
the concept

e Trade-Off

The need to collect many examples
for

The ability to ‘explain’ single examples

(a ‘domain theory’)

( le, assume a smarter learner
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Knowledge-Based Artificial
Neural Networks, KBANN (98s-2001)

Initial
Symbolic
Domain

Theory

Final
Symbolic
Domain

Theory

Mooney, Pazzani, Cohen, etc

Extract

Examples

Insert

Initial
Neural
Network

Trained
Neural
network

Refine

Slide 6



_|_

e Geoff Hinton was an invited speaker
at ICML-88

e | recall him saying something like “one
can backprop through any function”

e And | thought “what would It mean to
backprop through a domain theory?”
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| Domain Theory Neural Network
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e Notice that symbolic knowledge
Induces a graphical model, which Is
then numerically optimized

e Similar perspective later followed In
Markov Logic Networks (MLNSs)

e However in MLNs, symbolic knowledge
expressed in first-order logic
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IfAand B then?Z Maps propositional rule
sets to neural networks

Bias

Q-
Weight
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Case Study:

Learning to Recognize Genes
(Towell, Shavlik & Noordewier, AAAI-90)

promoter :- contact, conformation.

contact :- minus_35, minus_10.

<4 rules for conformation>

<4 fU/@S f0/‘ minus_35> (Halved error rate

<4 rules for minus_10> promoter of standard BP)

contact conformation

X S DNA sequence
N A A O A A [T T T T T T T T TTTTT1711
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Learning Curves

(similar results on many tasks and
with other advice-taking algo’s)

Fixed amount of data
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From Prior Knowledge
to Advice (vaclin PhD 1995)

e Originally ‘theory refinement’ community assumed
domain knowledge was available before learning starts
(prior knowledge)

 When applying KBANN to reinforcement learning,
we began to realize

you should be able to provide domain knowledge to a
machine learner whenever you think of something to say

e Changing the metaphor:
commanding vs. advising computers

e Continual (ie, lifelong)
Human Teacher — Machine Learner Cooperation
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Reinforcement on Testset
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Rule Extraction

e Initially Geoff Towell (PhD, 1991)
viewed this as simplifying the trained
neural network (M-of-N rules)

e Mark Craven (PhD, 1996) realized

e This Is simply another learning task!

e |e, learn what the neural network computes
e Collect 1/0 pairs from trained neural network
e Give them to decision-tree learner

e Applies to SVMs, decision forests, etc
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KBANN Recap ”

‘ e Use symbolic knowledge to make an
Initial guess at the concept description

Standard neural-net approaches make a random guess

e Use training examples to refine the
Initial guess (‘early stopping’ reduces overfitting)

e Nicely maps to incremental (aka online)
learning

e Valuable to show user the learned model
expressed in symbols rather than numbers




Knowledge-Based Support
Vector Machines (2001-2011)

e Question arose during 2001
PhD defense of Tina Eliassi-Rad

How would you apply the KBANN
iIdea using SVMs?

e | ed to collaboration with Olvi

Mangasarian (who has worked on
SVMs for about 50 years!)
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Add soft constraints to linear
program (so need only follow
advice approximately)

Advice: In this region,
y should exceed 4

minimize

such that

[Iv]l; + ClIs];

+ penalty for violating aavice

fx) =y+s
constraints that represent aavice




Automatically
' Creating Advice
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Interesting approach to transfer learning

(Lisa Torrey, PhD 2009) —
So advice giving is
= Learn in task A

e Perform ‘rule extraction’

e Give as advice for related task B

e Since advice not assumed 100% correct,
differences between tasks A and B
handled by training ex’s for task B
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KBSVM Recap

‘ e Can view symbolic knowledge as a way to
label regions of feature space (rather than

solely labeling points)

e Maximize
Model Simplicity
+ Fit to Advice
+ Fit to Training Examples

e Note: does not fit view of “guess Initial model,
then refine using training ex’s”
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Markov Logic Networks, 20090+

(and statistical-relational learning in general)

e My current favorite for combining

symbolic knowledge and ™
numeric learning e

e MLN = set of weighted FOPC sentences

wgt=3.2 Vx,y,z parent(x, y) A parent(z, y)
— married(X, z)

e Have worked on speeding up MLN
Inference (via RDBMS) plus learning
MLN rule sets
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advised By AUC-PR CLL Time

MLN-BT 0.94 + 0.06 -0.52 + 0.45 18.4 sec
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e Rules involve logical variables

e During learning, we create new rules
to correct errors In Initial rules

e To do: also refine initial rules

(note that KBSVMs also do NOT refine rules,
though we had one AAAI paper on that)
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e Symbolic knowledge refined/extended by

Neural networks

- Applications in genetics,
Support-vector machines PP g

cancer, machine reading,
MLN rule and weight learning robot learning, etc

e Variety of views taken

Make initial guess at concept, then refine weights
Use advice to label a region in feature space
Make Initial guess at concept, then add wgt'ed rules

e Seeing what was learned — rule extraction
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Some Suggestions for

=
' Neural-Sym Community I"ﬂ

‘ e Allow humans to continually observe

learning and provide symbolic knowledge at
any time

e Never assume symbolic knowledge
IS 100% correct

e Allow user to see what was learned In a
symbolic representation to facilitate
additional advice

e Replace ‘neural’ with ‘numeric’

e Put a graphic on every slide ©
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Thanks for Your Time

' e Questions?

e Papers, Powerpoint presentations, and
some software available on line

pages.cs.wisc.edu/~shavlik/mlrg/publications.html
hazy.cs.wisc.edu/hazy/tuffy/

pages.cs.wisc.edu/~tushar/rdnboost/index.html
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