Twenty-Five Years of Combining Symbolic and Numeric Learning

Jude Shavlik University of Wisconsin USA



#### Key Question of AI: How to Get Knowledge into Computers?



# **Two Underexplored Questions in ML**



- How can we go beyond teaching machines solely via I/O pairs?
   'advice giving'
- How can we understand what an ML algorithm has discovered? 'rule extraction'

#### Outline



- Explanation-Based Learning (1980's)
- Knowledge-Based Neural Nets (1990's)
- Knowledge-Based SVMs (2000's)
- Markov Logic Networks (2010's)

Explanation-Based Learning (EBL) – My PhD Years, 1983-1987

• The EBL Hypothesis

By understanding <u>why</u> an example is a member of a concept, can learn essential properties of the concept

Trade-Off

The need to collect <u>many examples</u> *for* The ability to 'explain' single <u>examples</u>

(a 'domain theory')



Ie, assume a smarter learner

### Knowledge-Based Artificial Neural Networks, KBANN (1988-2001)



## What Inspired KBANN?



- Geoff Hinton was an invited speaker at ICML-88
- I recall him saying something like "one can backprop through <u>any</u> function"
- And I thought "what would it mean to backprop through a domain theory?"

## Inserting Prior Knowledge into a Neural Network





## **Jumping Ahead a Bit**

- Notice that symbolic knowledge induces a graphical model, which is then numerically optimized
- Similar perspective later followed in Markov Logic Networks (MLNs)
- However in MLNs, symbolic knowledge expressed in <u>first-order</u> logic

# **Mapping Rules to Nets**







#### Learning Curves (similar results on many tasks and with other advice-taking algo's)



# From *Prior Knowledge* to *Advice* (Maclin PhD 1995)



Slide 13

- Originally 'theory refinement' community assumed domain knowledge was available <u>before</u> learning starts (prior knowledge)
- When applying KBANN to reinforcement learning, we began to realize

you should be able to provide domain knowledge to a machine learner whenever you think of something to say

- Changing the metaphor: commanding vs. advising computers
- Continual (ie, lifelong) Human Teacher – Machine Learner Cooperation

### Some Sample Results



## **Rule Extraction**



- Initially Geoff Towell (PhD, 1991) viewed this as simplifying the trained neural network (M-of-N rules)
- Mark Craven (PhD, 1996) realized
  - This is simply another learning task!
  - Ie, learn what the neural network computes
    - Collect I/O pairs from trained neural network
    - Give them to decision-tree learner
  - Applies to SVMs, decision forests, etc

## **KBANN Recap**



 Use symbolic knowledge to make an <u>initial guess</u> at the concept description

Standard neural-net approaches make a *random* guess

- Use training examples to <u>refine</u> the initial guess ('early stopping' reduces overfitting)
- Nicely maps to <u>incremental</u> (aka online) learning
- Valuable to show user the learned model <u>expressed in symbols</u> rather than numbers

## Knowledge-Based Support Vector Machines (2001-2011)

- Question arose during 2001 PhD defense of Tina Eliassi-Rad How would you apply the KBANN idea using SVMs?
- Led to collaboration with Olvi Mangasarian (who has worked on SVMs for about 50 years!)





# Generalizing the Idea of a Training Example for SVM's

Can extend SVM linear program to handle '<u>regions as</u> <u>training examples</u>'

# Knowledge-Based Support Vector Regression



# Automatically Creating Advice



Interesting approach to *transfer learning* (Lisa Torrey, PhD 2009)

Learn in task A

So advice giving is done by MACHINE!

- Perform 'rule extraction'
- Give as advice for related task B
- Since advice not assumed 100% correct, differences between tasks A and B handled by training ex's for task B

#### **KBSVM Recap**



- Can view symbolic knowledge as a way to label <u>regions</u> of feature space (rather than solely labeling <u>points</u>)
- Maximize
  - Model Simplicity
  - + Fit to Advice
  - + Fit to Training Examples
- Note: does <u>not</u> fit view of "guess initial model, then refine using training ex's"

#### Markov Logic Networks, 2009+ (and statistical-relational learning in general)

 My current favorite for combining symbolic knowledge and numeric learning



- MLN = set of <u>weighted</u> FOPC sentences
  wgt=3.2 ∀x,y,z parent(x, y) ∧ parent(z, y)
  → married(x, z)
- Have worked on speeding up MLN inference (via RDBMS) plus learning MLN rule sets





## **Some Results**

| advisedBy | AUC-PR      | CLL          | Time     |
|-----------|-------------|--------------|----------|
| MLN-BT    | 0.94 ± 0.06 | -0.52 ± 0.45 | 18.4 sec |
| MLN-BC    | 0.95 ± 0.05 | -0.30 ± 0.06 | 33.3 sec |
| Alch-D    | 0.31 ± 0.10 | -3.90 ± 0.41 | 7.1 hrs  |
| Motif     | 0.43 ± 0.03 | -3.23 ± 0.78 | 1.8 hrs  |
| LHL       | 0.42 ± 0.10 | -2.94 ± 0.31 | 37.2 sec |

Differences from KBANN



- Rules involve logical variables
- During learning, we create new rules to correct errors in initial rules
- To do: also *refine* initial rules (note that KBSVMs also do NOT *refine* rules, though we had one AAAI paper on that)

# Wrapping Up



Symbolic knowledge refined/extended by

Neural networks

Support-vector machines MLN rule and weight learning

Applications in genetics, cancer, machine reading, robot learning, etc

Variety of views taken

Make initial guess at concept, then <u>refine</u> weights Use advice to label a <u>region</u> in feature space Make initial guess at concept, then <u>add</u> wgt'ed rules

Seeing what was learned – rule extraction

# Some Suggestions for Neural-Sym Community



- Allow humans to continually observe learning and provide symbolic knowledge at any time
- Never assume symbolic knowledge is 100% correct
- Allow user to see what was learned in a symbolic representation to facilitate additional advice
- Replace 'neural' with 'numeric'
- Put a graphic on every slide ©

## **Thanks for Your Time**

Questions?



 Papers, Powerpoint presentations, and some software available on line

pages.cs.wisc.edu/~shavlik/mlrg/publications.html

hazy.cs.wisc.edu/hazy/tuffy/

pages.cs.wisc.edu/~tushar/rdnboost/index.html