
Neural-Symbolic Rule-Based Monitoring

Alan Perotti
University of Turin
perotti@di.unito.it

Artur d’Avila Garcez
City University London

aag@soi.city.ac.uk

Guido Boella
University of Turin
boella@di.unito.it

Daniele Rispoli
University of Turin

daniele.rispoli@gmail.com

Abstract
In this paper we present a neural-symbolic system for
monitoring traces of observations in sofware systems. To this
end, we define an algorithm that translates a RuleR rule-based
monitoring system (RS) into a rule-based neural network sys-
tem (RNNS). We then show how the RNNS can perform trace
monitoring effectively and analyze its performance, report-
ing promising preliminary results. Finally, we discuss how
network learning could be used within RNNS to embed the
system into a framework for iterative verification and model
adaptation. It is hoped that a tight integration of verification
and adaptation within the neural-symbolic approach will help
support the development of self-adapting, self-healing sys-
tems.

1 Introduction
Several results in the area of neural-symbolic integration
have shown how the embedding of symbolic knowledge
into a connectionist model (such as a neural network) can
provide a flexible, parallelizable environment for effective
learning and reasoning (see (d’Avila Garcez, Broda, and
Gabbay 2002) for an introduction).
In this paper, we argue that adopting the neural-symbolic
methodology can be advantageous also in the area of run-
time monitoring and adaptation of software systems (Bar-
ringer, Rydeheard, and Havelund 2010). Rule systems allow
the verification of system properties by checking whether
sequences (traces) of activities comply with the properties,
one trace step at a time. We show that neural-symbolic inte-
gration can offer an iterative framework for fast monitoring
of properties and model revision. A recent and powerful
rule-based monitoring tool is RuleR (Barringer, Rydeheard,
and Havelund 2010). In this paper, we focus on the creation
of the neural-symbolic monitoring system from RuleR, and
leave the integration of model revision as future work. How-
ever, given the nature of the neural-symbolic approach, this
integration should be straightforward (although experimen-
tal evaluations will obviously be needed). A direct link be-
tween RuleR and neural networks is established by a trans-
lation algorithm first introduced in this paper.
In a nutshell, we address the following research question:
how can we perform rule-based trace monitoring within

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a neural-symbolic system? We tackle this question by (i)
defining a translation from rule-based monitoring system
RuleR into a connectionist network model and (ii) show-
ing how one can use the resulting network model to perform
trace monitoring efficiently; we analyze the performance of
an implementation of our system on a benchmark example,
checking accuracy and measuring system scalability.

The paper is organized as follows: in Section 2 we
describe the relevant background about the neural-symbolic
approach and the RuleR monitoring system. Section 3
introduces the encoding of a rule system in RuleR into a
neural network, and Section 4 defines how the network
can be used for online trace monitoring. Section 5 gives
an example of translation and monitoring, and Section 6
discusses the experiments we did to test our implementation.
Section 7 discusses directions for future work, and Section
8 concludes the paper.

2 Background
This paper presents an integration of the monitoring system
RuleR (Barringer, Rydeheard, and Havelund 2010) with the
paradigm of neural-symbolic computation (d’Avila Garcez,
Broda, and Gabbay 2002). In this section, we briefly sum-
marize the two.
The main purpose of a neural-symbolic system is to bring
together the connectionist and symbolic approaches exploit-
ing the strengths of both paradigms and, hopefully, avoid-
ing their drawbacks. In (Towell and Shavlik 1994), Tow-
ell and Shavlik presented the influential neural-symbolic
system KBANN (Knowledge-Based Artificial Neural Net-
work), a system for rule insertion, refinement and extraction
from feedforward neural networks. KBANN served as in-
spiration for the construction of the Connectionist Inductive
Learning and Logic Programming (CILP) system (d’Avila
Garcez, Broda, and Gabbay 2002; d’Avila Garcez and Za-
verucha 1999). CILP builds upon KBANN and (Hoell-
dobler and Kalinke 1994) to provide a sound theoretical
foundation for reasoning in artificial neural networks and
learning capabilities; the general framework of a neural-
symbolic system is composed by three main phases: en-
coding symbolic knowledge in a neural network, perform-
ing theory revision (by means of some learning algorithm)
in the network, and extracting a revised knowledge from

the trained network. In what follows, we use a variant
of CILP since we are interested in the automated integra-
tion of verification (through reasoning, model checking) and
adaptation (through learning) of software systems and mod-
els. More recently, Borges et al. (Borges et al. 2011;
Borges, d’Avila Garcez, and Lamb 2011) proposed a new
neural-symbolic system, named Sequential Connectionist
Temporal Logic (SCTL) for integrating verification and
adaptation of software descriptions. This framework en-
codes a system description into a particular kind of network,
namely NARX (Nonlinear AutoRegressive with eXogenous
inputs) and then a learning phase allows the integration of
different knowledge sources. Properties to be satisfied are
checked by means of an external model checking tool (such
as NuSMV): if a property is not satisfied, the tool provides
a counterexample that can be adapted with the help of an
expert and be used to train the NARX network to hopefully
adapt the model in the right direction. In this paper, we argue
that the simpler networks used by CILP can achieve similar
results, and show that a variation of CILP should be able to
implement the entire process without the need for using an
external model checking tool.
RuleR is a rule-based monitoring system. A wide range
of temporal logics and other specification formalisms can
be compiled into RuleR rules, and the obtained rule sys-
tem can be used for run-time verification. RuleR relies on
the declarative past and imperative future paradigm in exe-
cutable logic (Gabbay 1987); in its simpler version, RuleR
encodes propositional LTL, with logical formulae normal-
ized in Separated Normal Form (Fisher 1997). RuleR is de-
fined as a tuple 〈R,O, P, I, F 〉. R are rule names and O
observation names. Rules (defined in P) are formed from
a condition and a body, the fist one being a conjunction
of literals and the second a disjunctive set of literals; liter-
als are (potentially negative) occurrences of rule names or
observation names. The main idea is that rules can acti-
vate/deactivate other rules at any iteration. When a rule is
active, if its condition evaluates to true for the current state
(formed from the current observations and previous obliga-
tions of the rule system), its body defines what rules are ac-
tivated in the next state and what observations must hold.
Together with rules and observations, a monitoring system
is composed of initial rules (I) and forbidden ones (F). The
monitoring of a trace follows an iterative algorithm: given a
set of initial states, at each iteration the set of new observa-
tions (representing a step in the trace) is given. Inconsistent
states are removed, active rules are triggered and a new fron-
tier is obtained. At the end of the trace, all states containing
forbidden rules are removed, and if at least one state remains
then the trace is said to satisfy the rule set. As an example,
consider the rule r0 : −→ a, r0 | b.
Suppose that r0 is in the initial and in the forbidden set. This
rule system is formally defined as

〈{r0}, {a, b}, {r0 : −→ a, r0 | b}, {{r0}}, {r0}〉

and it models the LTL formula a until b. The system
starts with r0 active, and that rule can either reactivate itself
together with the future-time obligation a or just impose
the obligation b. Note that if neither a nor b are observed,

no consistent state is created and the monitoring fails. If
b is observed, r0 is not activated anymore: since r0 is the
(only) forbidden rule, the trace satisfies the system iff r0 is
not activated at the end of the trace, that is, if b has been
observed at least once after a sequence of a’s.

3 From Rule Systems to Neural Networks
In this section, we describe how we encode RuleR rules
into feedforward, single-hidden layer networks. In the spirit
of CILP, these networks will then be turned into recurrent
networks to achieve the parallel computation of the rules.
RuleR rules (from now on simply called ”rules” for conve-
nience) are composed by a name, a condition and a body:

name : condition −→ body

They are often represented as tuples:

〈{name}, {condition}, {body}〉

Given a rule 〈r, C,B〉, we may refer to its condition as
C(r) and to its body as B(r), respectively. Conditions are
conjunctions of literals, while bodies are disjunctions of
conjunctions of literals; literals are (potentially negated)
occurrences of rule names and observation names. A rule
system is a tuple 〈R,O, P, I, F 〉 such that R is a set of
rule names, O a set of observation names, P is the actual
description of the rules, I is a set of possible initial states
and F is the set of forbidden rules.

3.1 Network architecture
Algorithm 1 below describes the steps for encoding a rule
system into the neural network. Note that all neurons are la-
belled with the (potentially negated) name of the literals in
the rule system. We use xi to indicate the neuron with label
x in the input layer (similarly for the hidden and output lay-
ers); given a set of literals L, L± is its negative closure.
As in CILP, the main idea is to map conditions to the input

Algorithm 1 Translation algorithm
1: for all x ∈ {R± ∪O±} do
2: add a neuron (labelled x) in the input layer.
3: add a neuron (labelled x) in the output layer.
4: add a recurrent connection from xo to xi
5: end for
6: for all x ∈ R do
7: add a neuron (labelled x) in the hidden layer.
8: add a recurrent connection from xo to xh
9: end for

10: for all 〈r, C,B〉 ∈ P do
11: for all c ∈ C do
12: add a connection from ci to rh.
13: end for
14: for all b ∈ B do
15: add a connection from rh to bo.
16: end for
17: end for

layer, rules to hidden neurons and bodies to the output layer.
The behaviour of a rule (that is, a satisfied condition trigger-
ing the body) is mirrored in a signal propagation from the
input layer to the ouput layer through the activation of the
hidden neuron representing the rule.
Lines 1,2,3 of the algorithm create, both in the input and out-
put layer, a neuron for every rule or observation name and
its negation. We represent negation explicitly since the mon-
itoring process requires the network to detect (and remove)
inconsistencies (hence, modelling negation with the lack of
signal would not allow us to do this). Lines 6,7 create a
hidden neuron for each rule name. Lines 1,4 add a normal
recurrent connection from the output to the input layer; lines
6,8 add a recurrent connection from the output to the hid-
den layer (differently from CILP). This connection is used
to modify the hidden neuron’s threshold and it models the
rule activation: its use will be explained in what follows.
Lines 10 to 16 create the feedforward connections from the
condition literals to the rule names and from the names to
the body literals.

3.2 Rule-based Neural Network System
We now define the network system more formally.
Definition 1. A Rule-based Neural Network RNN is a
network, obtained from a RuleR rule system such that:
• the architecture is given by Algorithm 1 above;
• all the feedforward connections have weight W ;
• all the recurrent connections have weight 1;
• all the hidden and output neurons have threshold θ;
• all neurons have activation functions h(·),
where W , θ and h(·) are computed as done for CILP in
(d’Avila Garcez, Broda, and Gabbay 2002).

Definition 2. A Rule-based Neural Network System is a
tuple 〈RNN, I, F,Co, Cr〉, where
• RNN is a rule-based neural network as introduced in

Definition 1;
• I is a set of rule names to be activated ad the beginning

of the monitoring;
• F is a set of rule names that are required not to be acti-

vated at the end of the monitoring;
• Cr is a function that checks the output of the network for

consistency;
• Co is a function that checks consistency between the in-

coming observations and the rule-generated obligations.
We compute weights, thresholds and activation functions

of RNNs as in (d’Avila Garcez, Broda, and Gabbay 2002)
in order to implement the following conditions:
• the input potential of a hidden neuron xh can only ex-

ceed xh’s threshold (θxh
), activating xh, when all the pos-

itive antecedents of rule x are assigned the truth value true
while all the negative antecedents of x are assigned false;

• the input potential of an output neuron xo can only ex-
ceed xo’s threshold (θxo

), activating xo, when at least one
hidden neuron yh that is connected to xo is activated.

The hidden neurons of a RNN have two additional fea-
tures: threshold update and disjunct selection. The threshold
update feature mirrors the activation of the respective rule.
In RuleR, if a rule name occurs in the state generated by
the body of the activated rules, in the next iteration that
rule is active, that is, its condition can be checked and, if
this is the case, its body is triggered. In RNN , after a
hidden neuron fires, it sets its threshold to an arbitrarily high
value (symbolically, +∞). This will prevent the hidden
neuron from firing again at the next iteration, as no input
will be large enough to pass this threshold. Each positive
rule-labelled output neuron xo that gets triggered afterwards
will then set the threshold of the respective hidden neuron
(xh, that is, the neuron with the same label) back to θxh

,
so that this neuron can fire in the next iteration if the input
signal is strong enough. Summarizing, hidden neurons do
not fire (due to the high threshold) unless the respective
output neuron fired at the previous iteration, just like RuleR
rules will not be active unless the rule name occurred in the
output status in the previous iteration.
Disjunct selection copes with the body of the rules: they
are disjunctions of conjunctions of literals. It is worth
noting that RuleR handles a frontier of possible states: set I
may contain different initial states with the disjunctions in
the body of the rules generating different states (although
some may be pruned due to inconsistency). Note that,
when several rules with disjunctive bodies are triggered, the
disjuncts have to be selected and combined. To implement
this, the network is made to reason hypothetically. For sim-
plicity, we use a single state and select a disjunct from the
body of each active rule at each iteration. This assumption
of disjuncts allows a more compact representation in the
neural network than representing the entire frontier would,
but may require multiple runs over the same trace, since
a trace may satisfy the rule system by making a wrong
assumption of disjuncts. We will discuss this choice in the
experiments. In particular, we will evaluate how, with some
implementation adjustments, this choice has little impact
on expressive power and performance. In contrast, if we
were to implement a single-state frontier in the network, we
would be able to monitor several traces at a time, since a
batch can be encoded as a matrix, each line corresponding
to a trace. This implementation decision may depend on the
application at hand according to its theoretical maximum
parallel speed-up.

4 Monitoring
Given a RuleR rule system R, we can generate a rule-based
neural network system RNNS = 〈RNN, I, F,Co, Cr〉.
This system can be used to check if traces comply with the
temporal logic property encoded by R. A trace is a finite
sequence of observations, τ = o1, o2, .., on. The monitoring
algorithm is described in Algorithm 2.
Lines (1 to 4) initialize the RNNS: the rules in the initial

set are used to activate the corresponding rule-labelled input
neurons and to set the threshold of the corresponding hid-
den neurons to its nominal value θ. Lines (5 to 16) describe
the iterative part of the monitoring cycle: line (6) checks for

Algorithm 2 Monitoring algorithm
1: for all x ∈ I do
2: Feed 1 as input to xi
3: Set θxh

to θ
4: end for
5: for i = 1→ n do
6: if ¬Co then
7: return false
8: end if
9: add oi to the input layer

10: Feedforward activation
11: Set the hidden neuron thresholds
12: if ¬Cr then
13: return false
14: end if
15: Recurrent activation
16: end for
17: if ∃ xo s.t. x ∈ F, xo is active then
18: return false
19: else
20: return true
21: end if

observation consistency, as observation obligations from the
previous iteration may not match the current actual obser-
vations. Any consistency check failure causes the termina-
tion of the algorithm with negative outcome. If the obser-
vation consistency check succeeds, the new observations are
added to the network (i.e. feeding the inputs of the respec-
tive input neurons so that they are activated), the network is
run feedforward and, for each active output neuron labelled
with a positive rule name, the respective hidden neuron’s
threshold is set to its nominal value. Another consistency
check is performed on the resulting state, as different rules
may have activated output neurons with inconsistent labels.
If this check succeeds, the output layer’s output is propa-
gated back, through the network’s recurrent connections, to
the input layer, and another iteration begins. Lines (17 to
21) check whether any forbidden rule is still active after the
trace terminates (i.e. a stable state is found in the recurrent
network): if this is the case, the trace does not satisfy the
rule system, and the algorithm returns false. If, however, no
forbidden rule is active, the trace satisfies the rule system
and the outcome is true. Whether or not a rule r is activated
can be checked in the final state of the network by checking
the activation of the output-layer, r-labelled neuron ro.

4.1 Semantics
In this section we give a formal account of the monitoring
algorithm and an evaluation semantics over traces of obser-
vations. One key intuition is that, although we encode a rule
system in a neural network, all neurons keep a symbolic
interpretation, as the activation of a neuron is interpreted as
an occurrence of that rule/observation name.

Definition 3. A configuration γ for a RNN at time t is
the set of active neurons in its output layer at t. We will

decompose γ into γA and γO, the first one being the set of
rule-labeled neurons in γ and the second being the set of
observation-labeled neurons in γ.

Definition 4. . A set of literals L is said to hold in a
configuration γ iff (L\O±) ⊆ γA ∧ (L\R±) ⊆ γO.

Definition 5. A set of observation literals L is said to
match a configuration γ if and only if L ∩ γ is consistent
and γ ⊆ L. The function match performs such a check. A
set of (matching) observations L can be added to an input-
configuration γ by the function addObs which activates the
input neurons corresponding to literals in L.

Definition 6. A step between configurations, γ −→ γ′,
holds iff ∀x ∈ γ′,∃ y ∈ γA s.t. ∀z ∈ C(y), z ∈ γ.
This means that every active neuron x in γ′ has been
activated by a hidden neuron y which was active in γ and
had its condition satisfied, as all neurons in its condition
belonged to γ as well.

Definition 7. A RNN 〈RNN, I, F,Co, Cr〉 accepts an ob-
servation trace τ = o1, o2, .., on if there exists a sequence of
configurations γ = γ1, γ2, .., γn such that:
• ∃i ∈ I s.t. i = γ1
• ∀γn−1i:1 ,match(oi, γiO) ∧ addObs(γi, oi) −→ γi+1

• γn ∩ F = ∅
A trace that is not accepted by a RNN (that is, for which
there exists no accepting run) is said to violate the RNN.

Definition 8. The language of the rule-based network
L(RNN) is the set of finite traces τ such that RNN
accepts τ .

Remark 1. Above, we have redefined RuleR’s semantics in
term of active neurons, mirroring its definitions from literals
to neural networks. Therefore, the RNN built upon a rule
system R accepts the same language of R, as at any time the
configuration in R (in terms of positive literals) corresponds
to the configuration of RNN (represented by active neurons).

5 Example
We now give an example of how a temporal logic formula
can be transated into a rule system and into a RNNS; we
then show an example of run over an observation trace.
Suppose we start from the SNF formula:

�((a ∧ b) ⇒©(c Ud))

Using the following abbreviations:
• runtil = rcUd,
• rgen = rg,(a∧b)⇒©(cUd),
• rlink = r(a∧b)⇒©(cUd)

the resulting RuleR system RS = 〈R,O, P, I, F 〉 becomes:

rG !rLrL!rG rU !aa!rU !bb c !dd!c

rG !rLrL!rG rU !aa!rU !bb c !dd!c

rL rUrG

and and and and and and and

and and

or

or Rule-generated inconsistency

Observation-generated inconsistency

or unsatisfying run

and and

Observations (trace)

Figure 1: RNNS obtained from RuleR system RS

• R = {runtil, rgen, rlink}
• O = {a, b, c, d}
• P = {runtil :−→ d | c, runtil,

rgen :−→ rgen, rlink,
rlink : a, b −→ runtil}

• I = {{rgen, rlink}}
• F = {runtil}

Intuitively, rgen keeps rlink alive, that is, it ensures that
rlink is active at any step of the monitoring. rlink connects
the present-past and future parts of the SNF formula: once
a and b are observed at the same time, the antecedent of the
implication holds, and the consequent has to be satisfied,
so rlink triggers runtil. runtil reactivates itself as long as
c is observed, and stops as soon as a d is observed. runtil
being active means that the final condition of the until (that
is, observing d) has not been fulfilled yet: this is why runtil
appears in F .
The resulting RNNS is depicted in Figure 1. In the picture,
dashed lines and boxes are component of the RNNS that do
not belong to the neural network: consistency checks, initial
value and forbidden rules. Note that the neural network
is scarcely connected; for monitoring tasks, as no weight
changes in the network is required, several neurons can be
removed. The entire network is needed, though, if we were
to perform learning. In this case, the network should be
connected fully and initialized with small random weights,
as done by CILP. A learning algorithm may then change the
network’s weights in the usual way (d’Avila Garcez, Broda,
and Gabbay 2002). Learning is left as future work.

Table 1: Example of accepting run
Obs. Rules Resulting state
1 a,c rgen, rlink rgen, rlink
2 b,d rgen, rlink,b,d rgen, rlink
3 a,b,c rgen, rlink,a,b,c rgen, rlink, runtil
4 a,c rgen, rlink,a,c rgen, rlink, runtil,c
5 b,c rgen, rlink,b,c rgen, rlink,d
6 a,d rgen, rlink,a,d rgen, rlink

For the sake of presentation clarity, an accepting run of
the RNNS over a trace is showed in Table 1. The table
has to be read as follows: each row corresponds to an
iteration; the Rules column lists the output states generated
by the active rules in the previous round merged with the
current observations (for the first row, this corresponds to
the rules in I). The Resulting state column is the union
of the bodies of the rules in the Rules column such that
their conditions were satisfied. Since runtil is not active
at the end of the run (bottom-right cell), the trace is accepted.

6 Experiments
We have implemented the RNNS in Prolog and GNU Oc-
tave. Prolog was mostly used for the translation, as this
phase requires parsing the RuleR rules; the Prolog code cre-
ates a RNNS in Octave and then matrices are used to perform
monitoring through network activation. One big difference
between RuleR and RNNS is that the first uses a breadth-
first exploration strategy, while the latter uses a randomized
depth-first search. Neither systems use backtracking: RuleR
mantains a frontier of states, while RNNS randomly picks

which node to explore and, in case of failure, starts again
from the beginning. With some rule manipulation and im-
plementation choices, we were able to steeply narrow the
branching factor, often generating completely deterministic
RNNS.
For our tests, we used three custom-designed properties:
• a⇒©(true Ub)

• a ∧ b⇒©(c U(d ∨ e))
• a ∧ b⇒©((true U(c ∧ d)) ∨ (e Wfalse))

Figure 2: Scalability of time over trace size

We generated a RNNS from each rule and fed it satisfying
traces. Our goal was to analyze the impact of trace length
on one hand, and property size on the other. Figure 2 shows
the numerical results of a small batch of tests: on the X axis
is the number of states of the trace (divided by ten: actual
values span from 10 to 100); on the Y axis is the time (in
seconds) required for the system to perform an accepting
run over the trace. The three curves, namely F1, F2 and
F3, represent three properties of increasing size. This
example shows that, although RNNS may require several
runs over the same trace in order to reach an accepting
run, the number of runs does not seem to impact much
on performance, as the monitoring time seems to increase
linearly with the trace size.

7 Future work
In the area of process mining, the key aspects are model dis-
covery, conformance checking and model enhancement (van
der Aalst et. al 2011). In many business process scenarios,
even if a system is rigorously defined, its implementation
may slightly deviate from the model: for instance, the
protocol within an office may vary due to an unavaiable
resource (a broken printer) or external constraints (a strike,
a delay in office supplies delivery, etc.). The analysis of
event logs can provide insight into how processes actually
take place, and to what extent actual processes deviate from
a normative process model (Goedertier et al. 2009). Having
encoded a rule system in a neural network-based system, we
conjecture that its intrinsic flexibility and noise tolerance
will enable us to model this adaptation process through
learning and verification from event logs in the RNNS.

8 Conclusions
This paper contains, to the best of our knowledge, the
first implementation of a rule-based monitoring system
in the neural-symbolic paradigm. We have provided
an algorithm for translating RuleR rules into a neural
network-based monitoring system and an explanation of
how trace monitoring can be performed in the network.
We have implemented our system and tested it on three
benchmark examples which indicate that it should scale
well to large-size properties even when traces have to be
calculated repeatedly. This and the system’s possibility of
handling errors (noise) in the network, indicate em business
process adaptation as a promising application area for
RNNS. Next, we shall embed the system in a process
mining iterative framework. To do this, we shall investigate
learning strategies and knowledge extraction mechanisms,
and analyze system performance, accuracy and scalability
in this application area.

References
Barringer, H.; Rydeheard, D. E.; and Havelund, K. 2010.
Rule systems for run-time monitoring: from eagle to ruler.
J. Log. Comput. 20(3):675–706.
Borges, R. V.; d’Avila Garcez, A. S.; Lamb, L. C.; and Nu-
seibeh, B. 2011. Learning to adapt requirements specifica-
tions of evolving systems. In ICSE, 856–859.
Borges, R. V.; d’Avila Garcez, A. S.; and Lamb, L. C.
2011. Learning and representing temporal knowledge in re-
current networks. IEEE Transactions on Neural Networks
22(12):2409–2421.
d’Avila Garcez, A. S., and Zaverucha, G. 1999. The con-
nectionist inductive learning and logic programming system.
Appl. Intell. 11(1):59–77.
d’Avila Garcez, A.; Broda, K.; and Gabbay, D. 2002.
Neural-Symbolic Learning Systems: Foundations and Ap-
plications. Perspectives in Neural Computing. Springer.
Fisher, M. 1997. A normal form for temporal logic and its
application in theorem-proving and execution. Journal of
Logic and Computation 7:429–456.
Gabbay, D. M. 1987. The declarative past and imperative
future: Executable temporal logic for interactive systems. In
Temporal Logic in Specification, 409–448.
Goedertier, S.; Martens, D.; Vanthienen, J.; and Baesens,
B. 2009. Robust process discovery with artificial negative
events. Journal of Machine Learning Research 10:1305–
1340.
Hoelldobler, S., and Kalinke, Y. 1994. Towards a new mas-
sively parallel computational model for logic programming.
In ECAI94 workshop on Combining Symbolic and Connec-
tioninst Processing, 68–77.
Towell, G. G., and Shavlik, J. W. 1994. Knowledge-based
artificial neural networks. Artif. Intell. 70(1-2):119–165.
van der Aalst et. al, W. M. P. 2011. Process mining man-
ifesto. In Business Process Management Workshops (1),
169–194.

