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Abstract

The neural basis of speech recognition and, more generally,
sound processing is not well understood. A simple subset of
the task of speech recognition, learning to categorise vowel
sounds, provides some insights into the more general prob-
lems. A simulated neural system that performs this task is
described. The system is based on relatively accurate fatigu-
ing leaky integrate and fire neurons, and learns to categorise
three categories of vowel sounds. The input to the system is
in the form of neural stimulation that relatively accurately re-
flects the response of biological neurons in the ear to auditory
input. The system correctly categorises 91.71% of the vowel
sounds using a five-fold test. The system is a sound model of
the neuropsychological task of phoneme categorisation, all be
it a far from perfect model. As such, it provides an entry into a
better understanding of the neuro-psychological mechanisms
behind sound processing.

Introduction
Speech recognition is a very complex human skill. While
aspects of the mechanisms of speech recognition are un-
derstood, the understanding of the full mechanism is far
from complete. In particular, there is no simulation that
approaches human level speech recognition skill. Conse-
quently, the neural mechanisms of human speech recogni-
tion are an excellent domain to explore and simulate because
this exploration will improve the scientific community’s un-
derstanding of the neural mechanism of speech processing,
and may provide an improved speech recognition system.

This paper describes a neural simulation of a relatively
simple speech recognition task, vowel recognition. To some
degree, the sound of a phoneme including a vowel phoneme
is the simplest form of an auditory symbol. The system
uses a relatively simple neural model with good biological
fidelity. The system is trained on instances of three vowel
sounds (a, i, and u), and is then used to recognise other in-
stances of those sounds.

The system takes advantage of the Cell Assembly (CA)
hypothesis (Hebb, 1949). This states that the neural basis
of a concept is a CA, a reverberating circuit of neurons.
This circuit of neurons can remain active after stimulus has
ceased. A CA is a categoriser, categorising an instance of an
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input as an instance of the concept that the CA represents.
In this paper, there are three CAs, one for each of the three
sounds. These CAs are learned, and then used to categorise
inputs.

Background
While understanding of human hearing and speech recogni-
tion is far from complete, a great deal is known. Similarly,
while the mechanisms of mammalian neural processing are
not entirely understood, a great deal is also known.

Hearing
The ear including the cochlea is a very complex system that
performs a wide range of actions crucial for hearing (Rob-
les and Ruggero, 2001). For the purposes of the simulation
described in this paper, a simple description is that the ear
acts as a frequency detector. Hair cells, a type of neuron
in the cochlea, respond in a frequency specific manner to
sound (Fettiplace and Hackney, 2006). All auditory infor-
mation that enters the brain comes from the cochlea via the
hair cells.

There are then a series of steps between the cochlea and
the auditory cortex. For example there are connections in
this path from the inferior colliculus, in the midbrain, to the
medial geniculate body, in the thalamus. This path branches,
and there are backward connections; e.g. there are also con-
nections from the medial geniculate body to the inferior col-
liculus.

Additionally, a wide range of mammals can respond to
specific vowels. For examples, gerbils encode vowel sounds
(Sinnott and Mosteller, 2001). This enables exploration
of the brain via invasive techniques, and one such study
has shown that gerbils represent vowels on a two dimen-
sional tonotopic map in the auditory cortex (Ohl and Sche-
ich, 1997).

Vowels
There are a range of vowel sounds. The first and second for-
mants are both necessary and sufficient to recognise vowels
(Peterson and Barney, 1952). The first formant of a signal
is the frequency with the most power. If a note was played
on a piano or a tuning fork, there would be only one for-
mant. The second formant is the one with the second most
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Figure 1: Vowel Matrix (Derived from Peterson and Barney
(1952) )

power; if there were two different tuning forks, the signal
would have just two formants. In a typical speech signal
there are several formants, and indeed in the data used in
this paper there were several. Vowels can be recognised by
their position in the fist formant (F1) by second formant (F2)
matrix. One chart for English speakers is described in figure
1. Depending on accents, this matrix will vary, and different
languages have different matrices because languages vary in
the vowel sounds they use.

Neural Simulations
This paper is inspired by Hoshino et al. (2002), who used a
Cell Assembly model to learn to categorise vowel sounds.
Their system learned to categorise five Japanese vowel
sounds. The system was trained on these sounds from five
different speakers, and could categorise novel sounds. The
input was the first and second formant with input coming
to neurons from zero, one, or two external inputs. Connec-
tions within the categorising net allowed a Cell Assembly to
become active (ignite). This ignition categorised the input
sound. Unfortunately, machine learning like results are not
reported, so it is not entirely clear how well the system per-
forms; it is entirely possible that it categorised all test sounds
correctly.

In this paper, a system that categorises vowel sounds is
presented. This system moves beyond the system described
by Hoshino et al. (2002). Instead of extracting the for-
mants directly from the signal, the input to the system ac-
tivates neurons as they are in the ear (see the Hearing sec-
tion). Also, categorising neurons receive inputs from both
formants and from other frequencies; that is the formant ma-
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Figure 2: The input of an i sound. It has been binned into
20 frequency bins, and the duration is over roughly 600 time
steps.

trix (figure 1) is not part of the topology. This input is then
used to drive a set of neurons that learn to categorise.

Data and Preprocessing
Ten instances of each of the three vowel sounds
were recorded using a Galaxy AP-830 head set and
head phones on five consecutive days by one indi-
vidual (the author). These were recorded at 44KHz
and saved in .wav format. These files and other
code required to run the simulations are available from
http://www.cwa.mdx.ac.uk/chris/hebb/speech1.html.

Using matlab, a fourier transfer was done to translate the
signal from the time domain to the frequency domain. This
was then translated to mel-frequency cepestral coefficients
(MFCCs). This is thought to reflect the actual frequency
mapping in hair cells (Holmberg and Gelbart, 2006). This
was later translated to input neural firing in the system (see
Input and Training below). Before this was done the fre-
quency matrix was normalized so that all files produced
roughly the same number of input neuron spikes per sound
file.

Note that, very roughly speaking, the input is what the
brain receives. The MFCC sorted frequencies are an approx-
imation of the firing of cochlear hair cells. Also note that
the normalization does not reflect correct hair cell behaviour.
Hair cells fire more rapidly at higher volumes, which is not
the case in this simulation.

System Description
The system described below is a neural model. It has many
similarities to the brain, but in many ways is an extreme sim-
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Figure 3: MFCC inputs over the full time averaged for sam-
ple vowells. E1 refers to the first instance of E (from keep),
and E3 the third. A1 and O1 refer to the first a and u (from
father and loot).

plification. Processing is done in the system by simulated
Fatiguing Leaky Integrate and Fire (FLIF) neurons. In the
simulation, these neurons are broken into two subnets which
correspond roughly to parts of the cochlea and primary au-
ditory cortex. Training is done with a 5-Fold test that is a
standard mechanism for machine learning.

Neural Model
The neural model that has been used in this simulation is a
fatiguing leaky integrate and fire (FLIF) model. The model
has been aligned to biological data (Huyck, 2011) so that the
model emits spikes at similar times to a biological neuron
with the modelled input current. The particular neuron was
rat somatosensory cortical neuron, and the behaviour of hair
cells and auditory cortical neurons, whether rat, human or
gerbil, is likely to be different.

The simulation uses discrete steps, and each neuron has an
activation at each time step (initially 0), and this activation
is described by equation 1.

at
i =

at−1
i

d
+

∑

j∈V

wji, d > 1 (1)

The activation at time t, at
i is the sum of the new activation it

receives, and the activation from the prior time step divided
by a decay factor d. The decay factor models the leak. In-
tegration is done by passing activation from all connected
firing neurons V weighted by their synaptic weights Wji. If
a neuron spikes, it loses all activation, though the incoming
activation may cause it to spike again in the next cycle.

The neuron fires if its activation surpasses the threshold as
described by equation 2. The threshold is a constant θ added
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Figure 4: Topology of Intra-Subnet Connections for Vowell
Learning.

to the current fatigue of that neuron. Fatigue is initially 0,
F 0

i = 0, and never goes lower than 0. Fatigue increases
by a constant, Fc, when the neuron fires, and decreases by a
separate constant, Fr, when the neuron does not fire. Fatigue
makes it more difficult for a neuron to fire at a high rate
continuously.

at
i >= θ + F t

i (2)

The basic neural parameters for both subnets used in the
simulation were θ = 2.2.. d = 1.12, Fc = 0.045 and Fr =
0.01. These were the parameters derived from biological
data (Huyck, 2011).

Topology
The topology is the way the neurons are connected. The
neurons are broken into two subnetworks, and the two main
features are connectivity within subnets and connectivity be-
tween the subnets.

There are 400 neurons in the cochlear subnetwork. All
are excitatory. They are arranged in rows for the purposes
of input (see next subsection). There are no connections
between neurons in this subnetwork as is the case in the
cochlea (Moser, Brandt, and Lysakowski, 2006).

There are 600 neurons in the Primary Auditory (or
Phoneme) subnetwork, in a 20x30 array. 30% of these are
inhibitory. This subnetwork is preset so that it has three CAs,
and there are no connections back to the input (cochlear)
subnetwork. The excitatory connections are selected with
a distance biased connectivity that has been used in other
simulations (Huyck, 2007, e.g.). This connectivity is bi-
ologically inspired with excitatory connections locally and
to one other part of the net. The inhibitory connections
were randomly selected (using the Java random function);
each neuron had 40 inhibitory connections, though as there
are no self-connections, a neuron could have less if a self-
connection was selected. The weights of the connections are
preset to make the three CAs, with three bands of 200 neu-
rons. Intra-CA connections are weighted .2 and -.1 for ex-
citatory and inhibitory, and connections between CAs were
weighted .01 and -1.

Figure 4 shows the basic form of the connections between
the subnets. The only plastic connections were between sub-
nets. Each neuron in the input subnet projected to 20 random
neurons in the phoneme subnet. As all of these neurons were



excitatory, all of these synapses were excitatory, and were
initially given a very small value of .02. During training
(and testing) the weights ranged between 0 and .4 and were
determined by a Hebbian rule in response to input.

The simulation used a relatively simple correlatory learn-
ing rule. Briefly (but see Huyck, 2007, for a more complete
description), this Hebbian rule reflects the likelihood that
the post-synaptic neuron fires when the pre-synaptic neuron
fires.

∆+wij = (A− (wij ∗A)) ∗R (3)

∆−wij = A ∗ (wij) ∗ −R (4)

The weight is increased (equation 3) when both pre and
post-synaptic neurons fire. It is decreased (equation 4) when
the pre-synaptic neuron fires but the post-synaptic neuron
does not; it is a pre-not-post Hebbian learning rule. R is the
learning rate, .001 in these simulations. A is a weighting
factor, A = 0.4 in these simulations. So if the post-synaptic
neuron always fires when the pre-synaptic neuron does, the
synapse has a weight near .4, and if it never does, the weight
approaches 0. In the simulation, the learning rate is very
low (.001) so that the network is not unduly influenced by
the most recent learning events.

Input and Training
Training and testing were divided into a series of Epochs. In
an epoch, one example of a vowel sound was presented. In
the testing epochs, the CA with the most neurons fired was
picked as the category of that vowel sound. Activation and
fatigue of all neurons were reset to zero after each epoch.

Each voice file was translated into a 20xN vector. With
each of the N elements corresponding to roughly .005 sec-
onds of the file. Each of the 20 elements corresponded to
a frequency range, and the value of that cell reflected how
much power that particular range of frequencies had over
that particular time.

The input subnet was directly associated with these 20 fre-
quency ranges, so that every row of neurons corresponded
to one frequency; that is 20 neurons were associated with
each frequency. The power of a particular frequency was
almost always 0, and rarely over 10. Depending on that
power, a number of the associated neurons were randomly
selected. For example, if the power of the lowest frequency
at the 105th time was 8, 8 neurons were selected randomly
to receive external activation; if a neuron was selected twice,
only 7 were fired.

Each input was fired for three cycles. In the simulated
neural model, each cycle is roughly 10ms, and as the input
is every 5 ms, this is a flaw in the model.

Each test was a 5-fold test. That is, the system was trained
on one set of input files, and tested on five sets (including
the training set). The sets consisted of two instances of each
of three vowels: u as in loot, i as in keep and a as in fa-
ther; a, i, and u are standard terms for these vowel sounds.
All 30 examples are spoken by one speaker (the author).
Each training session alternated between the six training in-
stances, i,u,a,i,u,a 40 times for a total of 120 epochs.

During the training epochs, the correct CA in the
phoneme subnet was stimulated. 100 of the 200 neurons
were randomly selected and externally activated. Both input
neurons and phoneme neurons, when externally activated,
received (1 + r) ∗ θ units of activation. Where r is a ran-
dom number between 0 and 1 and θ is the firing threshold.
Typically this means the neuron fires but in the case of the
phoneme neurons, they might not fire due to accumulated
fatigue.

After this, learning was turned off for testing. Testing
lasted for 600 epochs, going through each of the 30 voice
inputs 20 times.

After one full session (720 epochs), a new network was
created. As there is randomness in the creation of the net,
and the selection of neurons to activate, each net will behave
differently. This new network was trained using the next test
set.

Results
The model was tested on 100 nets, 20 5-fold tests. The aver-
age correct prediction was 92.68%. This test does consider
tests on the training set. If the training set is removed from
the test set, the average correct prediction is 91.71%. The
standard deviation is 6.17%, the best net got 99.38%, and
the worst 67.29%. The networks did fail on the training sets
during testing, though did get 96.54%.

The networks learned better from some input file
sets than from others. The results from the first set
(i1,u1,a1,i2,u2,a2) had an average recognition of 92.85%,
the second 92.67%, the third 95.74%, the fourth 90.69%,
and the fifth 91.43%.

A variant of the system performed better. When d = 1.11,
Fc = 0.8 and Fr = 0.5 on the input net, the average perfor-
mance was 93.31%. However, in this case, many of the test
runs had no neurons fire, and in this case the system always
guessed u. This raises the question of whether the CAs actu-
ally ignited. Remember that the categorisation decision was
made symbolically by summing all the neurons fired over all
the cycles of a test (typically around 900). In a typical case,
0 of the a neurons fired, 77491 of the i neurons fired, and
18 of the u neurons fired, which quite clearly shows the i
CA has ignited. With this second set of parameters, in only
slightly over half of the 60000 test cases did over 1000 neu-
rons fire in one CA.

Discussion
This model is another step in the community’s develop-
ing understanding of neuropsychology. A typical human
performs the relatively simple task of vowel categorisation
thousands of times in a typical day.

Despite a reasonable performance in this three category
task, particularly when only two instances of each category
are used to train, as a machine learning algorithm, the per-
formance is relatively weak missing several percent of the
examples. While it is likely that the performance could be
improved by altering the training regime or using more neu-
rons, sound performance is only one of the goals of this sys-
tem. A second goal is to perform the task as humans would.



The system is an advancement over that of Hoshino et al.
(2002). Instead of preprocessing the input voice sound to
extract formants, the system translates the voice sound to
firings that are similar to those that the first set of neurons
receives. That is, as a neuro-cognitive model, the input is
pretty close. It is likely that a simple statistical algorithm
could account for the variance and perform the task at or
near perfection, surpassing the system presented in this pa-
per.

Unfortunately, as a neuro-cognitive model, there are sev-
eral flaws. These flaws include a form of supervised learn-
ing, topological inaccuracy, and training regime inaccuracy.
The training mechanism is to activate the correct output CA
while the sound is presented. It is far from clear how the cor-
rect inputs are learned, but it is clear that the learning brain
is not presented with the correct category. From a simula-
tion point of view, a better model would be presented with
instances, and would self-organise to categorise them.

Similarly, the topology of the simulation is inaccurate.
While the input is a reasonable approximation to the biolog-
ical hair cells, and the output is some form of approximation
of the auditory cortex, biologically, there is a complex series
of neural steps between the two. This includes a neural path
through the cochlear nucleus, the medulla, the inferior col-
liculus, and the medial geniculate body. Of course it is dif-
ficult to see precise neural behaviour in the human brain in
each of these areas because electrode placement is currently
the only means of measuring precise neural behaviour and
electrodes are invasive. Fortunately, many types of mam-
mals can represent vowels. Less invasive techniques show
correlations between those mammals and humans, making
it plausible to reconstruct models of vowel recognition from
neural behaviour. There is evidence that the neural repre-
sentation of vowels is based on the first two formants (Ohl
and Scheich, 1997), but it is not entirely clear how those for-
mants are extracted. That is, it is not clear how the brain
translates the signal from hair cells to the first and second
formant, and how that signal stimulates the auditory cortex.

Another flaw is the training regime, and the discovery of a
correct training regime may be more difficult. It seems likely
that like vision (Hubel and Wiesel, 1962), hearing requires
some input at critical stages. However, unlike vision, it is not
clear how to prevent a neonatal mammal from having sound
as input, as the mother’s heartbeat will cause a sound. It is
far from clear how the pattern for vowels is learned. When is
it learned? Does it involve synaptic and neural death? What
effect does spontaneous activation have? How important is
synchronous firing? While many of these questions can be
answered with current technology, it requires long-term de-
velopmental studies and neonatal animals may need to be
included.

Conclusion
This paper has described a neural simulation that learns to
categorise three vowel sounds. The inputs is relatively ac-
curate biologically as is the neural model. Using a five fold
test, the system categorises 91.71% of the vowels correctly.

While the performance is reasonable, it is not very good
from a machine learning perspective. Similarly, the model

has several flaws as a neuropsychological model, not least
the use of sound normalisation. None the less, and despite
its weaknesses, this model is the best neuropsychological
model of vowel recognition, that the author is aware of, be-
cause it is the only one using simulated neurons starting with
reasonable neural input.

There are many plausible next steps with this work. Re-
maining with simulation, the next step might be the full
range of vowels. It would be straight forward to include the
full range of vowels in the model by merely increasing the
size of the phoneme net. Similarly the training regime could
easily be modified to include more vowel sounds, and for
that matter a wider range of speakers and a larger number of
training and testing instances.

Another way forward is to use unsupervised learning.
Here the speech signals would be input, but no output would
be provided. This might benefit from some sort of recruit-
ment learning (Diederich, Gunay, and Hogan, 2010), but
also might be effective without it.

Beyond vowels, other phonemes could be recognised.
While vowels depend on the first two formants, other
phonemes require different features. Clearly these features
are derived from the hair cell firings, but it is not clear what
type of intermediary neural processing would be useful. A
similar thing could be said for vowels. An exploration of
the mechanisms of neural feature extraction would be very
useful.

Once all phonemes are recognised with reasonable accu-
racy, full speech recognition could be the next step. It is
hoped that at this step, by basing all processes in neurons,
top down and bottom up processing will be able to interact
to gain synergy in speech processing. This should provide
a good cognitive model; for instance, people report hearing
sounds that have been masked out of speech (Warren, 1970).
The model should also do that. Moreover, this may provide
the basis for an improved speech recognition system.

Somewhat orthogonally to this speech recognition task,
volume normalisation is a problem that should be addressed.
Roughly the same neurons fire in the auditory cortex when
a vowel is heard at a low volume or a high volume. How is
this volume normalisation managed?

Also, the mammalian hearing system accounts for a wide
range of inputs beyond speech. How can other hearing be-
haviour be managed. For example, how can direction of a
sound be determined?

All of this future work on performance can also lead to
improved biological models. It is important that inspiration
and direction are drawn from an understanding of the actual
biological behaviour.

This may lead to exploration of biological data. This
would require experts in deriving the biological data. Hope-
fully, this work will be able ask those neuro-biologists some
interesting questions.
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