Leo de Penning

Neural Symbolic Cognitive Agents

11 11 Ē

Training and Assessment in Simulators

TNO | Knowledge for business

TNO Virtual Instruction Platform (VIP)

Integrating Users, Environments and Organizations for Training, Assessment and Research

Automated Assessment! The ingredients

- 1. Start with an agent with access to the simulator, task and user
- 2. Add a Recurrent Temporal Restricted Boltzmann Machine (RTRBM)
- 3. Use a Continuous Stochastic input layer to handle continuous data
- 4. Encode and extract knowledge to/from RTRBM using its energy function

Multi-Agent Virtual Instruction Platform

4

Virtual Instruction Platform Configuration

- <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

```
- <SOAP-ENV:Header>
```

```
<interval type="long" value="5" />
```

```
<loglevel type="string" value="INFO" />
```

- <children>

```
<simAgent class="org.tno.simscorm.simulation.hla.HLAgent" file="sim.xml" online="false" type="string" value="simAgent" /> <cogAgent class="org.tno.simscorm.assessment.ai.nsca.NSCAgent" file="cog.xml" online="false" type="string" value="cogAgent" /> </children>
```

```
<agent class="org.tno.simscorm.instruction.Instructor" file="instruction.xml" online="false" type="string" value="VInstructor" /> </SOAP-ENV:Header>
```

```
- <SOAP-ENV:Body>
```

```
- <cmi>
```

```
<scaled_passing_score />
```

```
<success_status type="string" value="unknown" />
```

```
<exit type="string" value="suspend" />
```

```
- <objectives>
```

```
- <drive id="1">
```

```
<id type="urn" value="urn:tno:drive" />
```

```
<description type="string" value="Drive for a while" />
```

```
- <score>
```

```
<raw ref="world.student_car.RelativeSpatial.RPM" type="double" value="789.969630783632" /> <scaled type="double" value="-0.7742943912046766" />
```

```
<min type="double" value="0.0" />
```

```
<max type="double" value="7000.0" />
```

```
</score>
<success_status type="string" />
```

```
5 Neural Symbolic Cognitive Agents for Training and Assessment in Simulators
```


Virtual Instruction Platform Presentation

Neural Symbolic Cognitive Agent Architecture

7

T

Neural Symbolic Cognitive Agent Recurrent Temporal Restricted Boltzmann Machine (RTRBM)

Automated Assessment

2-8-2010

Automated Assessment

2-8-2010

2-8-2010

12

Neural Symbolic Cognitive Agent Automated Assessment

Neural Symbolic Cognitive Agent Automated Assessment

Adaptive Training with Cognitive-based Feedback

2-8-2010

Adaptive Training with Cognitive-based Feedback

2-8-2010

Neural Symbolic Cognitive Agent Adaptive Training with Cognitive-based Feedback

Measurement Data Initial Conditions Dynamic Behaviour Learner Profile Context Data Script/Constraints Measurements Learner data **Beliefs** Intersection Vehicle right ∆TTI < 3s Novice Level... Rules (t-1) Rules (t) Train Giving Priority **Desires/Intentions** Short term evaluation Feedback Long term evaluation Mid term evaluation Instructions Feedback **Assessment Data** Assessment Instructions

Neural Symbolic Cognitive Agent Adaptive Training with Cognitive-based Feedback

Measurement Data Initial Conditions Dynamic Behaviour Learner Profile Context Data Script/Constraints Measurements Learner data **Beliefs** Intersection Vehicle right ∆TTI < 3s Novice Level... -Should Check Mirror_ Rules (t-1) Should Brake Rules (t) Train Giving Priority **Desires/Intentions** Short term evaluation Feedback Long term evaluation Mid term evaluation Instructions Feedback **Assessment Data** Assessment Instructions

18 Neural Symbolic Cognitive Agents for Training and Assessment in Simulators

2-8-2010

Continuous Stochastic Input

Hsin Chen and Alan F. Murray. Continuous restricted Boltzmann machine with an implementable training algorithm. In Vision, Image and Signal Processing, IEE Proceedings, pages 153-158, 2003.

Symbolic Extraction and Encoding with Penalty Logic

Penalty Logic Well Formed Formula (PLOFF):

1000	$N \to R$	Nixon is a Republican
1000	$N \to Q$	Nixon is also a Quaker
10	$R \rightarrow \neg P$	Republicans tend not to be Pacifist
10	$Q \rightarrow P$	Quakers tend to be Pacifist
3000	Ν	the person we reason about is Nixon

Gadi Pinkas. Reasoning, nonmonotonicity and learning in connectionist networks that capture propositional knowledge. In Artificial Intelligence v.77 n.2, pages 203-247, September 1995.

Symbolic Extraction and Encoding with a RTRBM

From Penalty Logic to Temporal Logic

Conditions:

(Area = urban)

Scenario:

ApproachingIntersection $\land \Diamond$ (ApproachingTraffic = right)

 $((Speed > 0) \land (HeadingIntersection)) \ (DistanceIntersection < x)$ $\rightarrow ApproachingIntersection$

Assessment:

ApproachingIntersection \land (DistanceIntersection = 0) (ApproachingTraffic = right) $\land \square$ (Speed = 0) \rightarrow (Evaluation

Trainee

Fuzzy Evidential Logic:

 $B = true \leftrightarrow w > 0, \neg B = true \leftrightarrow w < 0$

- $\Box B = true \leftrightarrow w \approx 1, \ \Box \neg B = true \leftrightarrow w \approx -1$
- $\Diamond B = \text{true} \leftrightarrow w \approx 0, \ \Diamond \neg B = \text{true} \leftrightarrow w \approx 0$

Ron Sun. A neural network model of causality. In IEEE Transactions on Neural Networks, Vol. 5, No. 4. pages 604-611. July, 1994. Temporal Logic: $\alpha \mathbb{S}\beta: \ \beta \to \alpha \mathbb{S}\beta$ $\alpha \land \bullet (\alpha \mathbb{S}\beta) \to \alpha \mathbb{S}\beta$

Luís C. Lamb, Rafael V. Borges, Artur S. d'Avila Garcez. A Connectionist Cognitive Model for Temporal Synchronisation and Learning. In Proceedings of the Conference on Association for the Advancement of Artificial Intelligence (AAAI), pages 827-832, 2007.

Results

- <environment comment="Agent environment" type="org.tno.trinity.models.Model">

```
- <assessor interval="100" type="org.tno.trinity.agents.NSCAgent">
```

- <memory comment="Agent memory" type="org.tno.trinity.views.View">
- <environment comment="Agent environment" type="org.tno.trinity.models.Model">
-

 <
- <rules comment="Rules for reasoning with beliefs" size="10">
- <rule_0 bias="4.2430946070335676" id="0" type="double" value="0.9555749">
- <prev_rules comment="Previous applied rules">

<score bias="0.36152741802402305" id="0" max="100.0" min="0.0" op="greaterorequal" type="double" value="53.9040275" weight="0.418713272306781" />
<speed bias="-54.9487688940324" id="1" max="7000.0" min="0.0" op="fessorequal" type="double" value="7000.0000000" weight="-9.057454322907315" />
</rule_0>

- <rule_1 bias="4.60062020202672413" id="1" type="double" value="0.0545924">
- <prev_rules comment="Previous applied rules">

<rule_0 <="" bias="4.2400</th><th>/946070335676" id="0" th=""><th>op-"greaterorequal" type</th><th>"double" value=-"0.99400</th><th>146° weight="0.8676618701</th><th>303594" /></th><th></th></rule_0>	op-"greaterorequal" type	"double" value=-"0.99400	146° weight="0.867661 8701	303594" />		
<rule_1 bias="4.6000</th><th>/2029267243.3" id="<b">'' c</rule_1>	or "areaber or equal" to be	"double <u>" volue "0.94228</u>	4" weight="0.6490951 9658	25427" />		
<rule_2 bias="4.5000</th><th>.31823627538" id="X</th><th>/ / / / / requal //</th><th>oubi va e 10.9: 5273</th><th>9" weight="0.84478939773</th><th>66996"></rule_2>						
<rule_3 bias="4.4600</th><th>128944295311" id="3</th><th>y= n v i n requai' ypa=</th><th>oubt vale ouse asso</th><th>6" weight="0.66369454549</th><th>64049"></rule_3>						
<rule_4 bias="4.5133</th><th>0254135314855" id="" th="" 🏴<="" 🚄=""><th>🗣 🗖 glaska 🗖 🖓 quai 🛛 type</th><th></th><th>62" weight="0.5470014235</th><th>958757" /></th><th></th></rule_4>	🗣 🗖 glaska 🗖 🖓 quai 🛛 type		62" weight="0.547001 4235	958757" />		
<rule_5 5°="" bias="4.2940</th><th>(2544),283322° id∞" c<="" th=""><th>p="greaterorequal" type=</th><th>"double" value="0.894549</th><th>12" weight="0.91.2440449574</th><th>84513" /></th><th></th></rule_5>	p="greaterorequal" type=	"double" value="0.894549	12" weight="0.91.2440449574	84513" />		
<rule_6 6"="" bias="4.4064</th><th>469094358198° id=" c<="" th=""><th>p="greatencequal" type=</th><th>"double" value="0.8933.22</th><th>2" weight="0.56668141258</th><th>80919" /></th><th></th></rule_6>	p="greatencequal" type=	"double" value="0.8933.22	2" weight="0.5666814 1258	80919" />		
<rule_7 bias="4.5908</th><th>11.292363604" id="7" op<="" th=""><th>"greaterorequal" type="e</th><th>double" value="0.9945599</th><th>* weight="0.617691574616</th><th>6499" /></th><th></th></rule_7>	"greaterorequal" type="e	double" value="0.9945599	* weight="0.61769157 4616	6499" />		
<rule_8 bias="4.3953</th><th>9750434033.6" c<="" id="8" th=""><th>p="greaterorequal" type=</th><th>"double" value="0.094502</th><th>4" weight="0.802273906682</th><th>09669" /></th><th></th></rule_8>	p="greaterorequal" type=	"double" value="0.094502	4" weight="0.80227390 6682	09669" />		
<rule_9 <="" bias="4.4873</th><th>190226728295" id="9" th=""><th>op="greaterorequal" type</th><th>-"double" value="0.99493</th><th>147" weight="0.7930460932</th><th>719465" /></th><th></th></rule_9>	op="greaterorequal" type	-"double" value="0.99493	147" weight="0.7930460932	719465" />		
<pre><score -54.9487<="" bias="0.361527 <speed bias=" pre=""></score></pre>	/41802402305" id="0" n /688940324" id="1" max	nax="100.0" min="0.0" op=" (="7000.0" min="0.0" op="	"greaterorequal" type="do essorequal" type="double	ouble" value="56.9445477" e" value="7000.0000000" we	weight="0.6595079032264: ight="-9.55371922541456	266" /> 6" />
<rule_2 bias="4.5051318</th><th>23627538" id="2" th="" type:<=""><th>"double" value="0.95421</th><th>51"></th><th></th><th></th><th></th></rule_2>	"double" value="0.95421	51">				
<prev_rules <="" comment="" th=""><th>Previous applied rules</th><th>"></th><th></th><th></th><th></th><th></th></prev_rules>	Previous applied rules	">				
<rule_0 <="" bias="4.2430</th><th>946070335676" id="0" th=""><th>op="greaterorequal" type</th><th>="double" value="0.99291</th><th>33" weight="0.6993276049</th><th>61496" /></th><th></th></rule_0>	op="greaterorequal" type	="double" value="0.99291	33" weight="0.6993276049	61496" />		
<rule 1="" bias="4.6006</th><th>20292672413" c<="" id="1" th=""><th>p="greateroregual" type=</th><th>"double" value="0.994940</th><th>9" weight="0.68087012237</th><th>04264" /></th><th></th></rule>	p="greateroregual" type=	"double" value="0.994940	9" weight="0.68087012237	04264" />		

crule_1 bias="4.600620292672413" id="1" op="greaterorequal" type="double" value="0.9949409" weight="0.6808701223704264" />
crule_2 bias="4.600620292672413" id="1" op="greaterorequal" type="double" value="0.9949609" weight="0.7423709633123091" />
crule_3 bias="4.460228944295311" id="3" op="greaterorequal" type="double" value="0.9947669" weight="0.7423709633123091" />
crule_4 bias="4.460228944295311" id="3" op="greaterorequal" type="double" value="0.9947669" weight="0.7423709633123091" />
crule_5 bias="4.460228944295311" id="3" op="greaterorequal" type="double" value="0.9947669" weight="0.7130773368356851" />
crule_5 bias="4.29407541783322" id="5" op="greaterorequal" type="double" value="0.9943501" weight="0.7130773368356851" />
crule_6 bias="4.406469094358198" id="6" op="greaterorequal" type="double" value="0.9940962" weight="0.7130773368325316" />
crule_6 bias="4.406469094358198" id="6" op="greaterorequal" type="double" value="0.9940962" weight="0.7130773368325316" />
crule_6 bias="4.406469094358198" id="6" op="greaterorequal" type="double" value="0.9940962" weight="0.7197623194788468" />
crule_7 id= 7" op="greaterorequal" type="double" value="0.9940962" weight="0

Results

Future Work

- <environment comment="Agent environment" type="ora.tno.trinity.models.Model">

- <assessor interval="100" type="org.tno.trinity.agents.NSCAgent">

- <memory comment="Agent memory" type="org.tno.trinity.views.View">
- <environment comment="Agent environment" type="org.tno.trinity.models.Model">
-
-

- <beliefs comment="Beliefs on the environment" type="double" value="0.1447801"> <score bias="0.36152741802402305" id="0" max="100.0" min="0.0" type="double" value="90.0000000" /> <speed bias="-54,9487688940324" id="1" max="7000.0" min="0.0" type="double" value="3014,6008232" />
- cules comment="Rules for reasoning with beliefs" size="10">
- crule_0_blas="4.2430946070335676" kl="0" type="double" value="0.9555749";
- Readable represenation of XML PLOFF in temporal logic and

natural "pins"4.450228944295311" id="3" op="greaterorequal" type="double" value="0.9944382" weight="0.7260354586900216" ang 1.260354586900216" ang 1.26035 "greaterorequal" type="double" value="0.9953213" weight="0.8468246601093128" biss="4,495469094353198" id="6" op="createrpresual" type="double" yslue="0.9946012" weight="0.9096922278415648 gule 7 bias="4.59081292363694" id="7" op="createroregual" type="double" value="0.9950574" weight="0.7141003732263917" crule 8 bias="4.335197564346316" id="0" op="createrpresual" type="double" value="0.9936395" weinbt="0.6566676756033129"

Validation of Neural Symbolic Cognitive Agent through validation

of extracted rules by Subject Matter Experts (SMEs)

.2430946020335576° id="0" op="meateroregual" type="double" value="0.9940046" weight="0.85766 -mile 1 hiss="4.6686502092672413" id="1" on="createronegual" type="double" vslue="0.9947284" weight="0.5498951965825437" /> <rule 2 bias="4,505131823627538" id="2" op="createroregual" bype="double" value="0.9952739" weight="0.8447893977366996" /> .460228944295311° id="3" op-"createrpregual" type="double" value="0.9940826" weight="0.5536945454954049"

Unsupervised learning of higher-order rules using Deep Boltzmann³ Machines¹ p="greaterorequal" type="double" value="0.9945599" weight="0.6176915796165499" / 300 Boltzmann³ Machines¹ p="greaterorequal" type="double" value="0.9945024" weight="0.8027390668239669"

<score blas="0.36152741802402303" id="0" max="100.0" min="0.0" op="greaterorequal" type="double" value="56.9445477" weight="0.6595079032264264" /:</pre> <soged bias="-54,9487688940324" id="1" max="7000.0" min="0.0" op="lessoneggal" type="double" value="7000.00000000" weight="-9.553719225414566" /> </rule 1>

2-8-2010

- <rule_2 bias="4.505131823627538" id="2" type="double" value="0.9542151">
- <prev rules comment="Previous applied rules">

<rule_0 bias="4.2430946070335676" id="0" op="greaterorequal" type="double" value="0.9929133" weight="0.699327604961496" /> <rule_1 bias="4.600620292672413" id="1" op="greateroregual" type="double" value="0.9949409" weight="0.6808701223704264" /> <rule_2 bias="4.505131823627538" id="2" op="greaterorequal" type="double" value="0.9947669" weight="0.7423709633123091" /> <rule_3 bias="4.460228944295311" id="3" op="greaterorequal" type="double" value="0.9951821" weight="0.8703549774488882" /> <rule_4 bias="4.5133254135314855" id="4" op="greateroregual" type="double" value="0.9946559" weight="0.7130773368356851" /> <rule_5 bias="4.294075441783322" id="5" op="greaterorequal" type="double" value="0.9943501" weight="0.8763712983825316" /> <rule_6 bias="4.406469094358198" id="6" op="greaterorequal" type="double" value="0.9940962" weight="0.7197623194788468" />

Neural Symbolic Cognitive Agent Higher-order rules with Deep Boltzmann Machines

26 Neural Symbolic Cognitive Agents for Training and Assessment in Simulators

2-8-2010

Neural Symbolic Cognitive Agent Higher-order rules with Deep Boltzmann Machines

Conclusions

- <environment comment="Agent environment" type="ora.tno.trinity.models.Model">

```
- <assessor interval="100" type="org.tno.trinity.agents.NSCAgent">
```

- <memory comment="Agent memory" type="org.tno.trinity.views.View">
- <environment comment="Agent environment" type="org.tno.trinity.models.Model">
-
-

 - <beliefs comment="Beliefs on the environment" type="double" value="0.1447801">
 - <score bias="0.36152741802402305" id="0" max="100.0" min="0.0" type="double" value="90.0000000" /> <speed bias="-54.9487688940324" id="1" max="7000.0" min="0.0" type="double" value="3014.6008232" /> </beliefs>
- <rules comment="Rules for reasoning with beliefs" size="10">
- <rule 0 bias="4.2430946070335676" id="0" type="double" value="0.9555749">
- <prey rules comment="Previous applied rules">

```
<rule 0 bias="4.2430946070335676" id="0" op="greateroregual" type="double" value="0.9938906" weight="0.8487069302943236" />
     <rule_1 bias="4.600620292672413" id="1" op="greateroregual" type="double" value="0.9955558" weight="0.8110718198700954" />
     <rule_2 bias="4.505131823627538" id="2" op="greaterorequal" type="double" value="0.9941882" weight="0.6368960452327056" />
     <rule 3 bios="4.460.22894429531.1" id="3" op="greaterorequal" bype="double" value="0.9044382" weicht="0.9260354586000316" />
     <rule_4 bias="4.5133254135314355" id="4" op="greateroregual" type="double" volue="0.9953211" weight="0.8458246601093128" />
     <rule_5 bizs="4.294075441783322" id="5" op="greateroregual" type="double" value="0.9937757" weight="0.7789742125091277" />
     <rule_6 bias="4.406469094358198" id="6" op="greateroregual" type="double" value="0.9946612" weicht="0.8095922278415548" />
                 "4.5903(292) (3104" ) = 7" (p="greater requait type="double" value="0.9950574" velott="0.7141003732200917" />
"4.305 PATTA KERSULTS=12 (Compromission Completence) (>
"4.487 PATTA KERSULTS=12 (Compromission Completence) (>
   </rray miss
   <score bias="0.36152741802402305" id="0" max=1100.0" min="0.0" op="greateroregual" type="double" value="53.9040275" weight="0.418713272306781" />
   cspeed bias="-54,9487688940324" id="1" mat="7000.0" min="0.0" op="lessoreceal" type="double" value="7000.0000000" wecht="-9.057454322907315" />
  </r>
- <rul>- <rul>1 bias="4.600600292672413" id="1" type="double" value="0.9545924"
 - cpress
            Experiments and validation ongoing
     ender 3 bine
                                                                                                      94478890
                                                                                                                    alaidda6" />
     <rule_3 bias="4.460228944295311" id="3" ap="greateroragual" type="double" value="0.9940826" weight="0.66369454549646499" />
     <rule_4 b:s="4.5133254135314555" id="4" op="greateroregaal" type="double" value="0.9957662" weight="0.9470814235956757" />
     <rule 5 bias="4.294075441783322' id="5" op="greateroregual" type="double" value="0.9945492" weicht="0.9124484957484513" />
     <rule_6 plas="4.406469094358198" id="6" op="greaterorequal" type="double" value="0.9931222" weight="0.5660814125880919" />
     <rule_7 bias="4.59081292363604" id="7" op="greateroregual" type="double" value="0.9945599" weight="0.6176915746166499" />
     <rule 8 bias="4.395197504340316" id="8" op="greateroregual" type="double" value="0.9945024" weight="0.8027390668209669" />
     <rule_9 bias="4.4872190226728295" id="9" op="greateroregual" type="double" value="0.9949347" weight="0.7930460932719465" />
   </prev rules>
   <score bias="0.36152741802402305" id="0" max="100.0" min="0.0" op="greateroregual" type="double" value="56.9445477" weight="0.6595079032264266" />
   <speed bias="-54.9487688940324" id="1" max="7000.0" min="0.0" op="lessoregual" type="double" value="7000.0000000" weight="-9.553719225414566" />
  </rule 1>
- <rule_2 bias="4.505131823627538" id="2" type="double" value="0.9542151">
 - <prev rules comment="Previous applied rules">
     <rule 0 bias="4.2430946070335676" id="0" op="greateroregual" type="double" value="0.9929133" weight="0.699327604961496" />
     <rule_1 bias="4.600620292672413" id="1" op="greateroregual" type="double" value="0.9949409" weight="0.6808701223704264" />
     <rule_2 bias="4.505131823627538" id="2" op="greateroregual" type="double" value="0.9947669" weight="0.7423709633123091" />
     <rule_3 bias="4.460228944295311" id="3" op="greateroregual" type="double" value="0.9951821" weight="0.8703549774488882" />
     <rule_4 bias="4.5133254135314855" id="4" op="greateroregual" type="double" value="0.9946559" weight="0.7130773368356851" />
     <rule_5 bias="4.294075441783322" id="5" op="greaterorequal" type="double" value="0.9943501" weight="0.8763712983825316" />
     <rule_6 bias="4.406469094358198" id="6" op="greaterorequal" type="double" value="0.9940962" weight="0.7197623194788468" />
```


Questions?

- <environment comment="Agent environment" type="org.tno.trinity.models.Model">

```
- <assessor interval="100" type="org.tno.trinity.agents.NSCAgent">
```

- <memory comment="Agent memory" type="org.tno.trinity.views.View">
- <environment comment="Agent environment" type="org.tno.trinity.models.Model">
-
drain comment="Assessment model" cost="2.0000000000002E-7" epochs="1" momentum="0.5" rate="0.01" type="org.tno.trinity.views.CRTRBMView">
-
deliefs comment="Beliefs on the environment" type="double" value="0.1447801">
- <score bias="0.36152741802402305" id="0" max="100.0" min="0.0" type="double" value="90.00000000" />
 <speed bias="-54.9487688940324" id="1" max="7000.0" min="0.0" type="double" value="3014.6008232" />
 </beliefs>
- <rules comment="Rules for reasoning with beliefs" size="10">
- <rule_0 bias="4.2430946070335676" id="0" type="double" value="0.9555749">
- <prev_rules comment="Previous applied rules">

<score bias="0.36152741802402"

<rule 1 bias="4.60062029267

<rule 2 bias="4.505131823

<rule 3 bias="4.46022894

<rule_9 bias="4. 219

<rule 4 bias="4.5133"

<rule 5 bias="4.29

<rule 6 bias="4.4

<rule 7 bias="4.

<rule 8 bias="4.

</prev rules>

<speed bias="-54.9487688</pre>

- <rule_1 bias="4.60062029_72 - <prev_rules comment="Previou <rule 0 bias="4.2430946070.</p>

</rule 0>

<rule 0 bias="4.2430946070335676" id="0" op="greateroregual" type="dow"</pre> <rule_1 bias="4.600620292672413" id="1" op="greateroregual" type="dou";</pre> <rule 2 bias="4.505131823627538" id="2" op="greateroregual" type="double"</pre> <rule 3 bias="4.460228944295311" id="3" op="greeneroregual" type="doub"</pre> h <rule_4 bias="4.5133254135314855" id="4" op="greaterorequal" type="double ht="0.8468246601093128" /> 742125091277" /> <rule_6 bias="4.406469094358198" id="6" op area terorequal" type="double" val 6012" were .8096922278415648" /> crule_7 bias="4.59081292363604" id="7" op="great rorequal" type="double" value="0.59950574" weight="0.7141003732260917" />
crule_8 bias="4.395197504340316" id="8" all "type="double" value="0.9936395" weight="0.6560670756093129" /> <rule 9 bias="4.4872190226728295" ype="double" value="0.9953095" weight="0.8702908752064891" /> </prev rules>

> areateror uual" type="double" value="53.9040275" weight="0.418713272306781" /> equal type="double" value="7000.0000000" weight="-9.057454322907315" />

de" value="0.9940046" weight="0.8676618701303594" />
ole" value="0.9947784" weight="0.6490951965825427" />
value="0.9952739" weight="0.8447893977366996" />
value="0.9957662" weight="0.636945454964049" />
value="0.9957662" weight="0.9470814235958757" />
alue="0.9945492" weight="0.9124484957484513" />
lue="0.9945599" weight="0.5660814125880919" />
l="0.9945599" weight="0.827390668209669" />
lue="0.9949377" weight="0.79304660932719465" />

_qual" type="double" value="56.9445477" weight="0.6595079032264266" /> _al" type="double" value="7000.0000000" weight="-9.553719225414566" />

<score bias="0.36152741802402305" id="0" max="100.0" min="0.0" o, gre <speed bias="-54.9487688940324" id="1" max="7000.0" min="0.0" op= less </rule 1>

- <rule_2 bias="4.505131823627538" id="2" type="double" value="0.9542151">

19.

)4" `

316" id

28295" id=

- <prev_rules comment="Previous applied rules">

1292

4750

<rule_0 bias="4.2430946070335676" id="0" op="greaterorequal" type="double" value="0.9929133" weight="0.699327604961496" />
<rule_1 bias="4.600620292672413" id="1" op="greaterorequal" type="double" value="0.9949409" weight="0.6808701223704264" />
<rule_2 bias="4.505131823627538" id="2" op="greaterorequal" type="double" value="0.9947669" weight="0.7423709633123091" />
<rule_3 bias="4.406228944295311" id="3" op="greaterorequal" type="double" value="0.9947669" weight="0.7423709633123091" />
<rule_4 bias="4.5133254135314855" id="4" op="greaterorequal" type="double" value="0.9946559" weight="0.7130773368356851" />
<rule_5 bias="4.406469094358198" id="6" op="greaterorequal" type="double" value="0.9946559" weight="0.8763712983825316" />
<rule_6 bias="4.406469094358198" id="6" op="greaterorequal" type="double" value="0.9946559" weight="0.713077368356851" />
</rule_6 bias="4.406469094358198" id="6" op="greaterorequal" type="double" value="0.9940962" weight="0.7130773623194788468" />
</rule_6 bias="4.406469094358198" id="6" op="greaterorequal" type="double" value="0.9940962" weight="0.71307732673194788468" />
</rule_6 bias="4.406469094358198" id="6" op="greaterorequal" type="double" value="0.9940962" weight="0.713077223047844888" />
</rule_6 bias="4.406469094358198" id="6" op="greaterorequal" type="double" value="0.9940962" weight="0.713077223047844888" />
</rule_6 bias="4.406469094358198" id="6" op="greaterorequa

ual"

