

Rorschach Test

Etzioni's Rorschach Test for Computer Scientists

K. Kersting
Lifted Message Passing
NeSy2010@AAAI 2010,
Atlanta, USA July 11, 2010

Moore's Law?

NeSy $2010 @$ AAAI 2010,

Storage Capacity?

NeSy 2010 @ AAAI 2010,
Atlanta, USA July 11, 2010

Number of Facebook Users?

Number of Scientific Publications?

Number of Web Pages?

Computing 2020: Science in an Exponential World

Artificial Intelligence in an Exponential World

AI = Structured (Data + Model + Reasoning $)$

- Real world is structured in terms of objects and relations
.Relational knowledge can reveal additional correlations between variables of interest. Abstraction allows one to compactly model general knowledge and to move to complex inference
[Fergus et al. 30(11) 2008; Halevy et al., IEEE Intelligent Systems, 24 2009]
- Most effort has gone into the modeling part
.How much can the data itself help us to solve a problem?

Fraunhofer

(First-order) Logic handles Complexity

E.g., rules of chess (which is a tiny problem):
1 page in first-order logic,
~ 100000 pages in propositional logic,
$\sim 100000000000000000000000000000000000000$ pages as atomic-state model

The real world is complex and uncertain

Let's deal with uncertainty, objects, and relations jointly

 objects, properties, relations

- Compact, natural probability models
- Properties of entities can depend on properties of related entities
- Generalization over a variety of situations
- Pragmatic view on probabilistic logics / inconsistency
... unifies logical and statistical AI,
... solid formal foundations,
\ldots is of interest to many communities.

K. Kersting	
Lifted Message Passing	
	NeSy 2010@ AAAI 2010, Atlanta, USA July 11, 2010

The real world is complex and uncertain

Today, we can ...

- ... learn probabilistic relational models automatically from millions of inter-related objects
- ... generate optimal plans and learn to act optimally in uncertain environments involving millions of objects and relations among them
- ... perform lifted probabilistic inference avoiding explicit state enumeration by manipulating first-order state representations directly
- ... exploit shared factors to speed up message-passing algorithms for relational inference but also for classical propositional inference such as solving SAT problems
K. Kersting
Lifted Message Passing
NeSy $2010 @$ AAAI 2010,
Atlanta, USA July 11, 2010

Lifted Inference

[Pfeffer et al. 1999; Poole 2003; de Salvo Braz et al. 2005]

- Example: Inviting \boldsymbol{n} people to a workshop

- Lifted inference exploits symmetries revealed by relational model
K. Kersting
Lifted Message Passing
NeSy 2010@ AAAI 2010,
Atlanta, USA July 11, 2010

Variable Elimination

Sum out non-query variables one by one

$$
\sum \phi_{1}\left(\text { pop }, \operatorname{att}\left(\mathrm{p}_{1}\right)\right) \phi_{2}\left(\operatorname{att}\left(\mathrm{p}_{1}\right), \text { ser }\right)
$$

Time is linear in number of invitees \boldsymbol{n} $\operatorname{attt}^{\left(p_{1}\right)}$

First-Order Variable Elimination

Symmetry Within Factors

[cf Zhang \& Poole 1996; Gupta et al. 2007, Milch et al. 2008]

- Values of counting formula are histograms counting how many objects X yield each possible value of attends (X)
- Only $\boldsymbol{n + 1}$ histograms, e.g., [50, 0], [49, 1], ..., [0, 50]
- Factor size now $2 \times(\boldsymbol{n}+1)$: linear in \boldsymbol{n}

Example: Competing Workshops

How do you spend your spare time?

You Tube

YouTube like media portals have changed the way users access media content in the Internet

Every day, millions of people visit social media sites such as Flickr, YouTube, and Jumpcut, among others, to share their photos and videos, ...
while others enjoy themselves by searching, watching, commenting, and rating the photos and videos; what your friends like will bear great significance for you.

How do you efficiently broadcast information?

facebook

Content Distribution using Belief Propagation

[Bickson et al. 04]

- Approximate inference
- Compute the marginal $P(x i \mid X)$ for each xi with local computations only
- Computer vision, combinatorial problems, SAT, NLP, ...

False	True	2.0
False False	0.4	

.4
$\mu_{X \rightarrow f}(x)=\prod_{h \in \operatorname{nb}(X) \backslash\{f\}} \mu_{h \rightarrow X}(x)$
$\mu_{f \rightarrow X}(x)=\sum_{\neg\{x\}}\left(f(\mathbf{x}) \prod_{y \in \operatorname{nb}(f) \backslash\{X\}} \mu_{y \rightarrow f}(y)\right)$ 4 $)^{1}$

Content Distribution using Belief Propagation

[Bickson et al. WDAS04]

(a)

(b)

$\psi_{B B}\left(X_{B}\right)$	3 from A	1 from C	3 from C	3 from D
Uniform policy	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$
Rarest part first	$1 / 6$	$1 / 2$	$1 / 6$	$1 / 6$

Table 2. Possible actions for the node B in the example graph shown in Figure 1

$\psi_{B D}\left(X_{B}, X_{D}\right)$	3 from A	2 from C	3 from C	3 from D
1 from B	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$
2 from C	$1 / 2$	ϵ	ϵ	$1 / 2$
3 from C	$1 / 2$	ϵ	ϵ	$1 / 2$

Table 3. Example of the edge potentials for the edge BD for the graph shown in Figure 2. The matrix rows are then normalized.

http://www-kd.iai.uni-bonn.de/index.php?page=software_details\&id=16

Lifted Belief Propagation

[Singla, Domingos AAAI08, K, Ahmadi, Natarajan UAI09]
Counting shared factors can result in great efficiency gains for (loopy) belief propagation

Shared factors appear more often than you think in relevant real world problems
K. Kersting
Lifted Message Passing
NeSy 2010@ AAAI 2010,
Atlanta, USA July 11, 2010
http://www-kd.iai.uni-bonn.de/index.php?page=software_details\&id=16
Step 1: Compression

K. Kersting
Lifted Message Passing
NeSy 2010 @ AAAI 2010,
Atlanta, USA July 11, 2010
http://www-kd.iai.uni-bonn.de/index.php?page=software_details\&id=16

Step 2: Modified Belief Propagation

$\mu_{\mathfrak{X} \rightarrow \mathfrak{f}}(x)=u_{\mathfrak{f} \rightarrow \mathfrak{X}}(x) \sqrt{c(\mathfrak{f}, \mathfrak{X})-1} . \prod_{\mathfrak{h} \in \boldsymbol{n b}(\mathfrak{X}) \backslash\{\mathfrak{f}\}} \mu_{\mathfrak{h} \rightarrow \mathfrak{X}}(x) \sqrt{c(\mathfrak{h}, \mathfrak{X})}$

$\mu_{\mathrm{f} \rightarrow \mathfrak{X}}(x)=\prod_{\mathrm{f} \in \mathbf{n b}\left(\mathfrak{X}_{i}\right)} \mu_{\mathfrak{f} \rightarrow \mathfrak{X}_{i}}\left(x_{i}\right)$

$$
b_{i}\left(x_{i}\right)=\prod_{\mathfrak{f} \in \mathbf{n b}\left(\mathfrak{X}_{2}\right)} \mu_{\mathfrak{f} \rightarrow x_{i}}\left(x_{i}\right)
$$

K. Kersting
Lifted Message Passing
NeSy 2010@ @AAI 2010,
Atlanta, USA July 11, 2010

Social Network Analysis

Social Network Analysis

K. Kersting
Lifted Message Passing
NeSy 2010@ AAAI 2010,
Atlanta, USA July 11, 2010

Social Network Analysis

Lifted First-order Factored Frontier

Apriori most people do not smoke
Apriori most people do not have cancer
Apriori most people are not friends
Smoking causes cancer
Friends have similar smoking habits
Most friends stay friends
Most smokers stay smokers
\neg Smokes (x, 0)
\rightarrow Cancer (x, 0)
\neg Friends ($\mathrm{x}, \mathrm{y}, 0$)
Smokes (x, t) \Rightarrow Cancer (x, t)
Friends $(x, y, t) \Rightarrow(\operatorname{Smokes}(x, t)<=>\operatorname{Smokes}(y, t))$
Friends(x, $y, t) \Leftrightarrow$ Friends $(x, y, \operatorname{succ}(t))$
$\operatorname{Smokes}(\mathrm{x}, \mathrm{t}) \Leftrightarrow \operatorname{Smokes}(\mathrm{x}, \operatorname{succ}(\mathrm{t}))$

20 people over 10 time steps. Max number of friends 5 . Cancer never observed. Time step randomly selected.

Lower Bound on Model Count of CNF

- BPCount [Kroc et al 08]
- BP used to estimate marginals
- Provable bound

Idea:

- Identify a "balanced" row split or column split (roughly equal number of solutions on each side)
- Use marginals for estimate
- Pick one side at random
- Count on that side recursively
- Multiply result by 2
[similar to decimation]
K. Kersting
Lifted Message Passing
NeSy 2010@ AAAI 2010,
Atlanta, USA July 11, 2010

Message Passing for Satisfiability

- Warning and survey propagation can also be lifted
- Enables lifted treatment of both prob. and det. knowledge

Gaussian Belief Propagation can also be lifted! Lifted Solvers for Systems of Linear Equations? Lifted Page Rank? Lifted HITS? Lifted Kalman Filter?

Content Distribution (Gnutella): Lifted BP vs. BP

K. Kersting
Lifted Message Passing
NeSy 2010 @ AAAI 2010,
Atlanta, USA July 11, 2010

Message Errors to the Rescue!

- Ihler et al. 05: BP message errors decay along paths
- LBP may spuriously assume some nodes send and receive different messages and, hence, produce pessimistic lifted network

Make use of decaying message errors already at lifting time

Social Networks

Lifted Content Distribution

- 1 file, Gnutella snapshort
- 10876 nodes
- 39994 edges
- iLBP 4.272.164 mess.
. <BP 5.761.952 mess.
. < LBP 6.381.516 mess.

. On a different network:
- iLBP 1.972.662 < LBP 2.962.311 < BP 5.761.952
K. Kersting
Lifted Message Passing
NeSy 2010@ AAAI 2010,
Atlanta, USA July 11, 2010

Conclusions

- SRL \geq Objects\&Relations + Probabilities + Machine Learning
- SRL works and covers the whole AI spectrum
- Lifted Reasoning / SAT / Message Passing
- Relational Machine Learning
- Relational POMDPs [Sanner, K, AAAI10]
- Relational / Symbolic Neural Networks?
- Deep Relational Networks?
- Relational LPs?
- Lifted Boltzmann Machines?
- ...

StarAl@AAAI-10

Together with S. Russell, L. Kaelbling, A.Halevy, S. Natarajan, and L. Milhalkova

Let's explore the minimal perturbations required for each of the Al areas to start using SR techniques

- Planning: from PDDL to SRPDDL?
- MDPs: from 2-TBN models to DSRL models?
- Vision: from graphical models and scene grammars to SR generative models?
- NLP: from unification grammars to SR-unification grammars?
- KR: ontologies and event calculus to SR models?
... Thanks for your attention

