Encoding Closure Operators into Neural Networks

Sebastian Rudolph

University of Karlsruhe Institute AIFB rudolph@aifb.uni-karlsruhe.de

Outline

- Closure Operators
- Formal Concept Analysis Basics
- Two Ways for Encoding
- Example & Relation to Alternative Approach

What is a closure operator?

- Given: base set M
- Function $\varphi: 2^M \rightarrow 2^M$ called closure operator if
 - extensive, i.e. $A \subseteq \varphi(A)$
 - monotone, i.e. $A \subseteq B$ implies $\varphi(A) \subseteq \varphi(B)$
 - idempotent, i.e. $\varphi(A) = \varphi(\varphi(A))$
- Example:
 - M set of all FOL formulae for a given signature
 - set of consequences of a given set of FOL formulae
 - (...in fact, every monotonistic logic is fine)

Closure operators in neural networks

- Question: How to realize a closure operator in a neural network?
- input and output layer clear, but what about the rest?

Γ

AIFB O

FCA Basics – Formal Contexts

formal context: $\mathbb{K}=(G,M,I)$

- set G objects
- set *M* attributes
- *I*⊆*G*×*M*

glm interpreted as: "object *g* has attribute *m*"

FCA Basics – Derivation Operators

Given \mathbb{K} =(*G*,*M*,*I*), define for $A \subseteq G$ and $B \subseteq M$

- $A':=\{m \mid glm \text{ for all } g \in A\}$ (all attributes common to all objects of A)
- B^I:={g | gIm for all m∈B} (all objects having every attribute of B)

Example: $\{2,4,6\}^{\prime} = \{ev\}$

g2 greater than two

FCA Basics – Formal Concepts

formal concept: pair (A,B)with $A^{I}=B$ and $B^{I}=A$

Formal concepts of K
can be ordered via

(A,B)≤(C,D) iff A⊆C

constitute a complete lattice.

Example:

 $(\{2n+3 \mid n \in \mathbb{N}\}, \{g2, od\})$

Γ

FCA Basics – Formal Concepts

formal concept: pair (A,B)with $A^{I}=B$ and $B^{I}=A$

Formal concepts of K
can be ordered via

(A,B)≤(C,D) iff A⊆C

constitute a complete lattice.

Example:

 $(\{2n+3 \mid n \in \mathbb{N}\}, \{g2, od\})$

cvevenododdprprimec0equals zeroe1equals onee2equals twog2greater than two

FCA Basics – Attribute Implications

Let $A,B\subseteq M$. Implication $A \rightarrow B$ holds in $\mathbb{K}=(G,M,I)$, if for every $g\in G$ $A\subseteq g^I$ implies $B\subseteq g^I$

> $g' := \{m \in M \mid glm\}$ (= all attributes of object g)

Some implications valid in the example:

 $\{g2, pr\} \rightarrow \{od\}$ $\{e0, e1\} \rightarrow M$ Example:

Γ

Now how can FCA help?

- In a formal context (G,M,I), the function

 (.)[#]: 2^M → 2^M, A ↦ A[#]
 is a closure operator on the attribute set.
- Idea:

- middle layer neuron associated to object g activated exactly if g ∈ A^l
- this is equivalent to $A \subseteq \{g\}^{I}$

- twofold linking in this way yields desired neural network which calculates (.)^{//}
- negative weights necessary because (.)^{*l*} is antitone
 (i.e. A ⊆ B implies B^{*l*} ⊆ A^{*l*})
- Can we do better?
- Yes! For input A, activate those middle layer neurons not belonging to A' (i.e., activate M \ A'). This makes mappings monotone and hence allows for positive weights and thresholds.

Middle layer revisited...

 middle layer neuron associated to object g activated exactly if not g ∈ A^l

Π

Output layer revisited...

- with B set of activated middle layer neurons, output layer neuron associated to attribute m activated exactly if m ∈ (G \ B)^l
- equivalent to $(G \setminus B) \subseteq \{m\}^{l}$
- equivalent to $(G \setminus \{m\}^{l}) \subseteq B$

AIFB O

• consider propositional logic program:

 $\begin{array}{ll} \operatorname{monkey} \to \operatorname{mammal} \\ \operatorname{donkey} \to \operatorname{mammal} \\ \operatorname{owl} & \to \operatorname{bird} \\ \operatorname{fowl} & \to \operatorname{bird} \\ \operatorname{monkey}, \operatorname{donkey} \to \bot \\ \operatorname{monkey}, \operatorname{donkey} \to \bot \\ \operatorname{owl}, \operatorname{fowl} & \to \bot \\ \operatorname{mammal}, \operatorname{bird} & \to \bot \\ \operatorname{mammal}, \operatorname{frog} & \to \bot \\ \operatorname{bird}, \operatorname{frog} & \to \bot \end{array}$

as solved by [Hölldobler & Kalinke] (recurrent version):

AIFB

Example

• as solved via FCA:

 $\begin{array}{ccc} monkey \rightarrow mammal \\ donkey \rightarrow mammal \\ owl & \rightarrow bird \\ fowl & \rightarrow bird \\ monkey, donkey \rightarrow \bot \\ owl, fowl & \rightarrow \bot \\ mammal, bird & \rightarrow \bot \\ mammal, frog & \rightarrow \bot \\ bird, frog & \rightarrow \bot \end{array}$

• as solved via FCA:

	monkey	donkey	mammal	frog	bird	owl	fowl
g_1					×		×
g_2					\times	\times	
g_3				\times			
g_4		\times	×				
g_5	×		×				

- set G constitutes middle layer
- blank cells of formal context constitute links in neural network

• as solved via FCA (antitone version):

• as solved via FCA (monotone version):

Conclusion

- neural networks defined via FCA calculate closure in one step (no recurrence needed)
- in some cases middle layer even smaller than using one middle layer neuron per implication

Directions for Future Work

- how to turn implication set into formal context without generating the whole lattice (because size might be exponential)
- extension to horn clauses
- how to use these results for the extraction part of the neural-symbolic learning cycle (not straightforward due to symmetry)

Thank you!