Encoding Closure Operators into Neural Networks

Sebastian Rudolph
University of Karlsruhe
Institute AIFB
rudolph@aifb.uni-karlsruhe.de

Placement in the big picture

Outline

- Closure Operators
- Formal Concept Analysis - Basics
- Two Ways for Encoding
- Example \& Relation to Alternative Approach

What is a closure operator?

- Given: base set M
- Function $\varphi: 2^{M} \rightarrow 2^{M}$ called closure operator if
- extensive, i.e. $A \subseteq \varphi(A)$
- monotone, i.e. $A \subseteq B$ implies $\varphi(A) \subseteq \varphi(B)$
- idempotent, i.e. $\varphi(A)=\varphi(\varphi(A))$
- Example:
- M set of all FOL formulae for a given signature
- set of consequences of a given set of FOL formulae
(...in fact, every monotonistic logic is fine)

Closure operators in neural networks

- Question: How to realize a closure operator in a neural network?
- input and output layer clear, but what about the rest?

FCA Basics - Formal Contexts

formal context: $\mathbb{K}=(G, M, I)$

- set G objects
- set M attributes
- $I \subseteq G \times M$
glm interpreted as:
„object g has attribute m^{\prime}

Example:

FCA Basics - Derivation Operators

Given $\mathbb{K}=(G, M, I)$, define for $A \subseteq G$ and $B \subseteq M$

- $A^{\prime}:=\{m \mid g / m$ for all $g \in A\}$ (all attributes common to all objects of A)
- $B^{\prime}:=\{g \mid$ glm for all $m \in B\}$ (all objects having every attribute of B)

Example: $\{2,4,6\}^{\prime}=\{\mathrm{ev}\}$

$e v$	even
$e d$	odd
$p r$	prime
$e 0$	equals zero
$e 1$	equals one
e2	equals two
e2	greater than two

FCA Basics - Formal Concepts

formal concept: pair (A, B)
with $A^{I}=B$ and $B^{I}=A$
Formal concepts of K

- can be ordered via
$(\mathrm{A}, \mathrm{B}) \leq(\mathrm{C}, \mathrm{D})$ iff $\mathrm{A} \subseteq \mathrm{C}$
- constitute a complete lattice.

Example:

$$
(\{2 n+3 \mid n \in \mathbb{N}\},\{g 2, o d\})
$$

FCA Basics - Formal Concepts

formal concept: pair (A, B)
with $A^{I}=B$ and $B^{I}=A$

Formal concepts of K

- can be ordered via
$(\mathrm{A}, \mathrm{B}) \leq(\mathrm{C}, \mathrm{D})$ iff $\mathrm{A} \subseteq \mathrm{C}$
- constitute a complete lattice.

Example:

$$
(\{2 n+3 \mid n \in \mathbb{N}\},\{g 2, o d\})
$$

FCA Basics - Attribute Implications

Let $A, B \subseteq M$. Implication $A \rightarrow B$ holds in $\mathbb{K}=(G, M, I)$, if for every $g \in G$ $A \subseteq g^{\prime}$ implies $B \subseteq g^{\prime}$

$$
g^{\prime}:=\{m \in M \mid g / m\}
$$

(= all attributes of object g)

Some implications valid in the example:

$$
\begin{aligned}
& \{g 2, p r\} \rightarrow\{o d\} \\
& \{e 0, e 1\} \rightarrow M
\end{aligned}
$$

Example:

[^0]
Now how can FCA help?

- In a formal context ($\mathrm{G}, \mathrm{M}, \mathrm{I}$), the function
$(.)^{\prime \prime}: 2^{M} \rightarrow 2^{M}, A \mapsto A^{\prime \prime}$
is a closure operator on the attribute set.
- Idea:

What about links, weights and thresholds?

- middle layer neuron associated to object g activated exactly if $g \in A^{\prime}$
- this is equivalent to $A \subseteq\{g\}^{\prime}$

- twofold linking in this way yields desired neural network which calculates (.)"
- negative weights necessary because (. $)^{1}$ is antitone (i.e. $A \subseteq B$ implies $B^{\prime} \subseteq A^{\prime}$)
- Can we do better?
- Yes! For input A, activate those middle layer neurons not belonging to A^{\prime} (i.e., activate $M \backslash A^{\prime}$). This makes mappings monotone and hence allows for positive weights and thresholds.

Middle layer revisited...

- middle layer neuron associated to object g activated exactly if not $g \in A^{\prime}$

Output layer revisited...

- with B set of activated middle layer neurons, output layer neuron associated to attribute m activated exactly if $m \in(G \backslash B)^{\prime}$
- equivalent to $(G \backslash B) \subseteq\{m\}^{\prime}$
- equivalent to $\left(G \backslash\{m\}^{\prime}\right) \subseteq B$

Example

- consider propositional logic program:

$$
\begin{array}{ll}
\text { monkey } & \rightarrow \text { mammal } \\
\text { donkey } & \rightarrow \text { mammal } \\
\text { owl } & \rightarrow \text { bird } \\
\text { fowl } & \rightarrow \text { bird } \\
\text { monkey, donkey } & \rightarrow \perp \\
\text { owl, fowl } & \rightarrow \perp \\
\text { mammal, bird } & \rightarrow \perp \\
\text { mammal, frog } & \rightarrow \perp \\
\text { bird, frog } & \rightarrow \perp
\end{array}
$$

Example

- as solved by [Hölldobler \& Kalinke] (recurrent version):

Example

- as solved via FCA:

monkey \rightarrow mammal donkey \rightarrow mammal
owl $\quad \rightarrow$ bird
fowl \rightarrow bird
monkey, donkey $\rightarrow \perp$
owl, fowl $\rightarrow \perp$
mammal, bird $\rightarrow \perp$
mammal, frog $\rightarrow \perp$
bird, frog $\quad \rightarrow \perp$

Example

- as solved via FCA:

		d $\frac{0}{\square}$ d 0	프́․ I In	-	O	$\overline{3}$	3
g_{1}					\times		\times
g_{2}					\times	\times	
g_{3}				\times			
g_{4}		\times	\times				
g_{5}	\times		\times				

- set G constitutes middle layer
- blank cells of formal context constitute links in neural network

Example

- as solved via FCA (antitone version):

Example

- as solved via FCA (monotone version):

Conclusion

- neural networks defined via FCA calculate closure in one step (no recurrence needed)
- in some cases middle layer even smaller than using one middle layer neuron per implication

Directions for Future Work

- how to turn implication set into formal context without generating the whole lattice (because size might be exponential)
- extension to horn clauses
- how to use these results for the extraction part of the neural-symbolic learning cycle (not straightforward due to symmetry)

Thank you!

[^0]: | $e v$ | even |
 | :--- | :--- |
 | od | odd |

 pr prime
 eO equals zero
 1 equals one
 e2 equals two
 92 greater than two

