Towards the integration of abduction and induction in artificial neural networks

Oliver Ray and Artur Garcez

NeSy'06 (August 29th, 2006)

Neural Network Abduction

Existing Work

- Diagnostic Problem Solving: inferring diagnoses (faults) from manifestations (symptoms) with Hopfield [GR96] and competition-based [RPT93] neural networks
- Cost-Based Abduction: specify cost of assuming an abducible with higher-order recurrent networks [AEA05]

This Work

- aim: to provide a massively parallel abductive method with no representational restrictions and the ability to handle multiple solutions; and allow the network to be revised by standard connectionist learning methods
- approach: generalise neuro-symbolic approaches from logic programs to abductive logic programs...

Abductive Logic Programming [KKT92]		
• Given T G IC	Theory – set of normal clauses Goal – set of literals Integrity Constraints – set of negative clauses	
• Find	Adducibles – set of ground atoms	
$\Delta \subseteq \mathbf{A}$	Hypothesis – set of Horn clauses	
• Such that $T \cup \Delta \models \exists G$ i.e. explanation $T \cup \Delta \cup IC \not\models \bot$ i.e. consistent		

Example		
Т	$= \left\{ \begin{array}{l} wont_start \leftarrow battery_flat\\ wont_start \leftarrow fuel_empty\\ battery_flat \leftarrow wet_day\\ overheat \leftarrow fan_broke\\ lights_on \end{array} \right\}$	
G	$= \left\{ wont_start \right\}$	
IC	$= \ \Big\{ \ \bot \leftarrow battery_flat, lights_on \ \Big\}$	
A	$= \left\{ fan_broke, fuel_empty, wet_day \right\}$	
Δ_1 Δ_2	$= \{fuel_empty\} \\= \{fuel_empty, fan_broke\}$	

$$\begin{aligned} \text{Representation of Abductive Context} \\ T' &= \begin{cases} wont_start \leftarrow battery_flat \\ wont_start \leftarrow fuel_empty \\ battery_flat \leftarrow wet_day \\ overheat \leftarrow fan_broke \\ lights_on \end{cases} \\ \\ G' &= \{goal \leftarrow wont_start\} \\ IC' &= \{ic \leftarrow battery_flat, lights_on\} \\ \\ A' &= \begin{cases} fan_broke \leftarrow a_1 \\ fuel_empty \leftarrow a_2 \\ wet_day \leftarrow a_3 \end{cases} \end{aligned}$$

- We have presented a neural network method for abduction which

 generalises existing translations from logic programs to
 - abductive logic programs – provides a neuro-symbolic method for (i) handling nonacceptable programs, (ii) answering queries, and (iii) expressing integrity constraints
- But variables must be grounded and it remains to see how this method can be integrated with neural network learning techniques

