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Motivation

● Functional large scale brain modelling with biologically 
plausible neural networks

● Fast simulation of neural networks
● Human language understanding is interesting because:

– Handling of ambiguities required
– Symbol grounding aspect: Translate sub-symbolic word 

representations to symbolic (word level or semantic) 
representations

– Applications in many fields
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Language processing:
Functional blocks

“bot show 
plum” Hidden Markov Model

 based phoneme 
recognition

Further processing (e.g. action planning)

Neural sentence
recogniser

Neural word
recogniser

Diphones/Triphones

Words

Audio

Semantic information
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A simple word recognition net

● 6 “cortical modules” (boxes)
● Each cortical module is 

modelled as a binary 
autoassociative memory

● “Spike counter populations” 
using sparse representa-
tions

● The modules are 
connected via 
heteroassociative links

Diphones Diphones

Words

Two states

Two states Two states
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A simple word recognition net

Diphones Diphones

Words

Two states

Two states Two states

● S1: Input module receiving 
diphones from HMM

● S2: Holds last ten diphones 
(as superposition)

● S3: Stores the words 
known in the system

● Other: Additional status 
information

● Connectivity: Arrows 
correspond to 
heteroassociations
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Basic mechanism:
Cortical module I

H

A

● Cortical modules are 
modelled as neural 
associative memory

● A: autoassociative coupling 
matrix (patterns / 
assemblies)

● H: heteroassociative 
coupling matrix (Input from 
other modules)

● All connection weights are 
binary (0 or 1)
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Basic mechanism:
Cortical module II

Spikes

IN
P

U
T

PARAMETER

Spikes

OUTPUT

H, AH, A

x(t), qx(t), q

α, L

Parameters:

α: separation strength
L: learn signal
q: quality measure
Coupling matrices:
H:Heteroassociation
A:Autoassociation

queue 0 (index, time, strength):
0 199.998 1
598 214.284 1
1025 219.999 1
1816 225.714 1
131 231.43 1
2 237.145 1

Example spike list:
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Basic mechanism:
Cortical module III

ẋ s t =a⋅cs
H t b⋅cs

H ∞⋅⋅cL csAt cs
 t  d⋅csF t e⋅csF ∞

The neuron model for one global time step s is given by

where x
s
(0)=0 and

cs
H t ~r s−D ,t ⋅H cs

F t ~r s−1,t ⋅Acs
At =y s t−d ⋅A cs

 t =y s t ⋅1
Heteroassociative input Autoassociative input Current module 

activation level
Short-term memory 

feedback

Heteroassociation
Separating 
inhibition

local feedback

The vector r is called “instantaneous rate” and is defined by
r i s ,tmax=1/min{t≤tmax : y i t =1}

y i
s t =1[x is t ≥]t The neuron activity y is given by

More details: See Markert/Knoblauch/Palm: “Modelling of syntactical processing in the cortex”, 
to appear in BioSystems, 2006
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Basic mechanism:
Display of neural activity
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Step 1:
Pattern of active 
neurons

Step 2:
Histogram of pattern 

activation

Step 3:
Display name of 

best matching 
pattern
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Example: “bwall”

● “sil_b” is entering S1
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Example: “bwall”

● “b_w” is entering S1
● “sil_b” is stored in S2
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Example: “bwall”

● “w_ao” is entering S1
● “sil_b” is stored in S2
● “b_w” is stored in S2

● S3 suggests “bot” or “ball”
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Example: “bwall”

● “ao_l” is entering S1
● “sil_b” is stored in S2
● “b_w” is stored in S2
● “w_ao” is stored in S2

● S3 suggests “wall”, “bot” or 
“ball”



29.08.2006 15

Example: “bwall”

● “l_sil” is entering S1
● “sil_b” is stored in S2
● “b_w” is stored in S2
● “w_ao” is stored in S2
● “ao_l” is stored in S2

● S3 suggests “wall”, “ball” or 
“bot”
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Example: “bwall”

● “sil_b” is stored in S2
● “b_w” is stored in S2
● “w_ao” is stored in S2
● “ao_l” is stored in S2
● “l_sil” is stored in S2

● S3 suggests “wall” or “ball”
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Word recognition:
Performance

● Timit speech corpus
● 1 fold of a 105-fold cross 

validation:
– Training uses 624 out of 

630 speakers with all 5 
sentences per speaker, 
meaning 20483 words in 
total

– Test data: 6 remaining 
speakers with 5 sentences 
per speaker, meaning 221 
test words in total

● Triphone HMM: 
80% correct triphones

● Word level:
– HMM:

74.6% correct words
– Simple network*:

65.2% correct words

* For this evaluation, a classical binary 
associative memory (Willshaw's model) with 
some simple postprocessing to decide for 
exactly one word was used.
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Sentence recognition network

● Sentence recognition network parses stream of words with 
respect to a given regular grammar

● Symbol grounding
– Input is sub-symbolic (word level) representation of words
– Output is symbolic (semantic/syntactical) representation

Subject-
words

Verbs Object-
words

Object-
words

Adjectives Adjectives

StatesWordsDelimitersWords,
Delimiters

Two states Two statesTwo states
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Sentence recognition network

● Sentence recognition network parses stream of words with 
respect to a given regular grammar

● Symbol grounding
– Input is sub-symbolic (word level) representation of words
– Output is symbolic (semantic/syntactical) representation
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Sentence recognition:
Graph memory A4

● Each path represents one allowed sentence type
● Our architecture allows for modelling arbitrary deterministic 

finite automata with neural networks.
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Sentence recognition
Example “bot lift bwall”

Step 16
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Sentence recognition
Example “bot lift bwall”

Step 18
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Sentence recognition
Example “bot lift bwall”

Step 37
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Sentence recognition
Example “bot lift bwall”

Step 56
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Sentence recognition
Example “bot lift bwall”

Step 57
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Sentence recognition
Example “bot lift bwall”

Step 66
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Sentence recognition
Example “bot lift bwall”

Step 68
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Conclusions /
Future Work

● Conclusions
– Word and language understanding is possible with simplified 

neural networks
– Representing, handling and resolving ambiguities is well 

supported by our architecture
– Close to real time simulation is possible on standard laptop 

machines

● Future Work
– Improvement of word recognition network (more sophisticated 

architecture) to increase recognition rate
– Top-down information from language to word recognition
– Handle ambiguities on the grammar level (e.g. “bot put orange 

orange orange plum”)
– More vocabulary, more sentence types
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