Integrating Logic Programs and Connectionist Systems

A Constructive Approach

Sebastian Bader ${ }^{1 *}$, Pascal Hitzler ${ }^{2 \dagger}$, Andreas Witzel ${ }^{3 \text { § }}$
${ }^{1}$ International Center for Computational Logic, Technische Universität Dresden, Germany
${ }^{2}$ AIFB, Universität Karlsruhe, Germany
${ }^{3}$ Department of Computer Science, Technische Universität Dresden, Germany

*Sebastian Bader is supported by the GK334 of the German Research Foundation (DFG).
${ }^{\dagger}$ Pascal Hitzler is supported by the German Federal Ministry of Education and Research (BMBF) under the SmartWeb project, and by the European Union under the KnowledgeWeb Network of Excellence.
${ }^{\ddagger}$ Andreas Witzel is supported by Freunde und Förderer der Informatik an der TU Dresden e.V.

Outline

(1) Motivation
(2) Approximating Logic Programs
(3) Multi-Layer Feed-Forward Networks
4. Radial Basis Function (RBF) Networks
(5) Conclusions

Motivation

Logic Programs (LP)

- well-defined semantics
- human-readable
- human-writable

Connectionist Systems (CS)

- robust
- adaptive
- trainable

Goal:

- Integrate both paradigms in order to exploit all advantages

One step towards achieving this goal:

- Transform LP into CS

What we have so far:

- Constructions for Propositional LP
- Non-constructive proofs for First-Order LP

In this work:

- Constructions for First-Order LP

A Simple Example

- A Logic Program P

```
even(0).
even}(s(X))\leftarrow\mathrm{ not even }(X).\quad% the successor of a
    % non-even }X\mathrm{ is even
```

- The Herbrand Base \mathcal{B}_{P} and some Interpretations

$$
\begin{aligned}
\mathcal{B}_{P} & =\left\{\operatorname{even}(0), \operatorname{even}(s(0)), \operatorname{even}\left(s^{2}(0)\right), \ldots\right\} \\
I_{1} & =\{\operatorname{even}(0), \operatorname{even}(s(0))\} \\
I_{2} & =\left\{\operatorname{even}(0), \operatorname{even}\left(s^{3}(0)\right), \operatorname{even}\left(s^{4}(0)\right), \operatorname{even}\left(s^{5}(0)\right), \ldots\right\}
\end{aligned}
$$

- The Single-Step Operator or Meaning Function T_{P}

$$
\begin{aligned}
I_{1} \stackrel{T_{P}}{\mapsto} I_{2} & \stackrel{T_{P}}{\mapsto} \\
\stackrel{T_{P}}{\mapsto} \ldots & \stackrel{T_{P}}{\mapsto} \\
& \left\{\operatorname{even}(0), \operatorname{even}\left(s^{2}(0)\right), \operatorname{even}\left(s^{2}(0)\right), \operatorname{even}\left(s^{3}(0)\right)\right\} \\
& \left.\operatorname{even}\left(s^{6}(0)\right), \operatorname{even}\left(s^{8}(0)\right), \operatorname{even}\left(s^{10}(0)\right), \ldots\right\}
\end{aligned}
$$

Embedding T_{P} in \mathbb{R}

- Enumerate \mathcal{B}_{P} using $\|\cdot\|: \mathcal{B}_{P} \rightarrow \mathbb{N} \backslash\{0\}$

$$
\left\|\operatorname{even}\left(s^{n}(0)\right)\right\|:=n+1
$$

- Embed $I \in \mathcal{J}_{P}$ into \mathbb{R} using $R(I):=\sum_{A \in I} 3^{-\|A\|}$

$$
R\left(\left\{\text { even }(0), \operatorname{even}\left(s^{2}(0)\right)\right\}\right)=0.101000 \ldots 3
$$

- Embed T_{P} into \mathbb{R} :

$$
\begin{aligned}
& I \in \mathcal{J}_{P} \xrightarrow{T_{P}} I^{\prime} \in \mathcal{J}_{P} \\
& \qquad R^{-1} \\
& \\
& x \in D_{f} \cdots
\end{aligned}
$$

where $D_{f}:=\left\{R(I) \mid I \in \mathcal{J}_{P}\right\}$

Embedding of the Example Program

In general, the graph is more complicated and not on a straight line!

Idea for Approximating f_{P}

- Goal: approximate f_{P} (the embedded T_{P}) up to ε
- Consider $x, x^{\prime} \in D_{f}$:

$$
\begin{aligned}
& x=0 \cdot \underbrace{x^{\prime}}_{\underbrace{00101011010}_{\text {Idigits are equal }} 000000 \cdots 3}=0 \cdot \overbrace{00101011010} 111111 \ldots 3
\end{aligned}
$$

Maximum difference $\delta_{l}:=\sum_{i>1} 3^{-i}=\frac{1}{3^{1} \cdot 2}$

- Greatest relevant output level $o_{\varepsilon}:=\min \left\{n \in \mathbb{N} \mid \delta_{n}<\varepsilon\right\}$
- Assume $T_{P^{\prime}}$ and T_{P} agree on all atoms of level $\leq o_{\varepsilon}$
$\Rightarrow f_{P^{\prime}}$ and f_{P} agree on the first o_{ε} digits
$\Rightarrow f_{P^{\prime}}$ approximates f_{P} up to ε

The Instance of P up to o_{ε}

- Goal: find P^{\prime} such that $T_{P^{\prime}}$ and T_{P} agree on atoms of level $\leq o_{\varepsilon}$
- Inclusion of A in $T_{P}(I)$ depends only on clauses with head A
- $P^{\prime}:=\left\{A \leftarrow B \in \mathcal{G}(P) \mid\|A\| \leq o_{\varepsilon}\right\}$
where $\mathcal{G}(P):=$ set of all ground instances of clauses from P
- P^{\prime} is finite if P is covered, i.e. if there are no local variables
- Greatest relevant input level $\hat{o}_{\varepsilon}:=\max \left\{\|L\| \| L\right.$ is body literal of some clause in $\left.P^{\prime}\right\}$
- $T_{P^{\prime}}$ depends only on atoms of level $\leq \hat{o}_{\varepsilon}$
$\Rightarrow f_{P^{\prime}}$ depends only on the first \hat{o}_{ε} digits
$\Rightarrow f_{P^{\prime}}$ is constant for all inputs which agree on first \hat{o}_{ε} digits
$\Rightarrow f_{P^{\prime}}$ consists of finitely many constant pieces

Our Example with $\varepsilon=0.02$

Building a CS with Step Activation Functions

The Resulting CS

Each - computes

- 0 , if weighted sum of inputs ≤ 0
- 1, otherwise

Building a CS with Sigmoidal Activation Functions

Approximate the step functions

Building a CS with Sigmoidal Activation Functions

Approximate the step functions by sigmoidals

Building a CS with Sigmoidal Activation Functions

Approximate the step functions by sigmoidals

Building a CS with Sigmoidal Activation Functions

Approximate the step functions by sigmoidals

Divide ε into ε^{\prime} for P^{\prime} and $\varepsilon^{\prime \prime}$ for the sigmoidals

The closest constant piece
 yields the zoom-out factor

A CS with Triangle or Raised-Cosine Activation Functions

Describe each constant piece by two triangles or raised cosines:

Refining an Existing Network

- Decreasing ε will only add clauses to P^{\prime}
- Consequence:
- Constant pieces may be divided into smaller pieces
- Some parts may be raised
- For $\varepsilon=0.007$, we get:

Conclusions and Problems

What we had before:

- Methods to construct CS for propositional LP
- Non-constructive proofs for the existence of CS approximating first-order LP

New results:

- Methods for constructing CS approximating first-order LP
- Method for iterative refinement

Problem:

- Floating point precision in real computers is very limited, so we can represent only few atoms

Possible remedy:

- Distribute representation on several input/output nodes

Conclusions and Problems

What we had before:

- Methods to construct CS for propositional LP
- Non-constructive proofs for the existence of CS approximating first-order LP

New results:

- Methods for constructing CS approximating first-order LP
- Method for iterative refinement

Problem:

- Floating point precision in real computers is very limited, so we can represent only few atoms

Possible remedy:

- Distribute representation on several input/output nodes

Thank you for your attention.

