
Integrating Logic Programs
and Connectionist Systems

A Constructive Approach

Sebastian Bader1∗, Pascal Hitzler2†, Andreas Witzel 3‡

1International Center for Computational Logic, Technische Universität Dresden, Germany
2AIFB, Universität Karlsruhe, Germany

3Department of Computer Science, Technische Universität Dresden, Germany

∗Sebastian Bader is supported by the GK334 of the German Research Foundation (DFG).
†Pascal Hitzler is supported by the German Federal Ministry of Education and Research

(BMBF) under the SmartWeb project, and by the European Union under the KnowledgeWeb
Network of Excellence.

‡Andreas Witzel is supported by Freunde und Förderer der Informatik an der TU Dresden e.V.



Outline

1 Motivation

2 Approximating Logic Programs

3 Multi-Layer Feed-Forward Networks

4 Radial Basis Function (RBF) Networks

5 Conclusions



Motivation

Logic Programs (LP)

well-defined semantics

human-readable

human-writable

Connectionist Systems (CS)

robust

adaptive

trainable

Goal:

Integrate both paradigms in order to exploit all advantages

One step towards achieving this goal:

Transform LP into CS

What we have so far:

Constructions for Propositional LP

Non-constructive proofs for First-Order LP

In this work:

Constructions for First-Order LP



A Simple Example

A Logic Program P

even(0). % 0 is an even number
even(s(X))← not even(X). % the successor of a

% non-even X is even

The Herbrand Base BP and some Interpretations

BP = {even(0),even(s(0)),even(s2(0)), . . .}
I1 = {even(0),even(s(0))}
I2 = {even(0),even(s3(0)),even(s4(0)),even(s5(0)), . . .}

The Single-Step Operator or Meaning Function TP

I1
TP7→ I2

TP7→ {even(0),even(s2(0)),even(s3(0))}
TP7→ . . .

TP7→ {even(0),even(s2(0)),even(s4(0)),
even(s6(0)),even(s8(0)),even(s10(0)), . . .}



Embedding TP in R

Enumerate BP using ‖ · ‖ : BP → N\{0}
‖even(sn(0))‖ := n +1

Embed I ∈ IP into R using R(I) := ∑A∈I 3−‖A‖

R
(
{even(0),even(s2(0))}

)
= 0. 1

even(0)

0

even(s(0))

1

even(s
2(0))

0

even(s
3(0))

0

even(s
4(0))

. . .3

Embed TP into R:

I ∈ IP TP

// I′ ∈ IP

R
��

x ∈ Df
fP //

R−1

OO

x ′ ∈ Df

where Df := {R(I)|I ∈ IP}



Embedding of the Example Program

R(I)

fP(R(I))

In general, the graph is more complicated and not on a straight line!



Idea for Approximating fP

Goal: approximate fP (the embedded TP ) up to ε
Consider x ,x ′ ∈ Df :

x = 0.00101011010︸ ︷︷ ︸
l digits are equal

000000 . . .3

x ′ = 0.
︷ ︸︸ ︷
00101011010111111 . . .3

Maximum difference δl := ∑i>l 3−i = 1
3l ·2

Greatest relevant output level oε := min
{

n ∈ N
∣∣δn < ε

}
Assume TP ′ and TP agree on all atoms of level ≤ oε
⇒ fP ′ and fP agree on the first oε digits
⇒ fP ′ approximates fP up to ε



The Instance of P up to oε

Goal: find P ′ such that TP ′ and TP agree on atoms of level ≤ oε

Inclusion of A in TP(I) depends only on clauses with head A

P ′ :=
{

A← B ∈ G(P)
∣∣‖A‖ ≤ oε

}
where G(P) := set of all ground instances of clauses from P

P ′ is finite if P is covered, i.e. if there are no local variables

Greatest relevant input level
ôε := max

{
‖L‖

∣∣L is body literal of some clause in P ′
}

TP ′ depends only on atoms of level ≤ ôε
⇒ fP ′ depends only on the first ôε digits
⇒ fP ′ is constant for all inputs which agree on first ôε digits
⇒ fP ′ consists of finitely many constant pieces



Our Example with ε = 0.02

R(I)

fP′ (R(I))

←
0
.00000

...3

←
0
.00111

...3

←
0
.01000

...3

←
0
.01111

...3

←
0
.10000

...3

←
0
.10111

...3

←
0
.11000

...3

←
0
.11111

...3

o0.02 = 3

P ′ = e(0).
e(s(0))←¬e(0).

e(s2(0))←¬e(s(0)).
⇒ ô0.02 = 2



Building a CS with Step Activation Functions

R(I)

fP′ (R(I))

←
0
.00000

...3

←
0
.00111

...3

←
0
.01000

...3

←
0
.01111

...3

←
0
.10000

...3

←
0
.10111

...3

←
0
.11000

...3

←
0
.11111

...3



The Resulting CS
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// GFED@ABC
1

88rrrrrrrrrrrrrr 1 //

1
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GFED@ABC −0.0741

//GFED@ABC∑ //

GFED@ABC
−0.0370
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Each GFED@ABC computes

0, if weighted sum of inputs ≤ 0

1, otherwise



Building a CS with Sigmoidal Activation Functions

Approximate the step functions

by sigmoidals

Divide ε into ε′ for P ′ and ε′′
for the sigmoidals

The closest constant piece
yields the zoom-out factor
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A CS with Triangle or Raised-Cosine Activation Functions

Describe each constant piece by
two triangles or raised cosines:



Refining an Existing Network

Decreasing ε will only add clauses to P ′

Consequence:
Constant pieces may be divided into smaller pieces
Some parts may be raised

For ε = 0.007, we get:



Conclusions and Problems

What we had before:

Methods to construct CS for propositional LP

Non-constructive proofs for the existence of CS
approximating first-order LP

New results:

Methods for constructing CS approximating first-order LP

Method for iterative refinement

Problem:

Floating point precision in real computers is very limited,
so we can represent only few atoms

Possible remedy:

Distribute representation on several input/output nodes

Thank you for your attention.
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