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Background:

— From hybrid systems to hybrid cog-
nitive architectures

combining a variety of techniques
possessing a variety of capabilities/functionalities
more comprehensive systems

−→ domain-generic models of cognition

— From engineering to science

empirical scientific data
empirical validation
theoretically driven

hypothesis-test

— A difficult problem and a grand chal-
lenge
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What is a Cognitive Architecture?

A cognitive architecture is a broadly-scoped, domain-

generic computational cognitive model, capturing the es-

sential structure and process of the mind, to be used for a

broad, multiple-level, multiple-domain analysis of cogni-

tion and behavior; Sun (2004, Philosophical Psychology)

— Architecture of a building:

overall framework and overall design, as well as roofs,

foundations, walls, windows, floors, and so on.

— Cognitive architecture:

overall structures, essential divisions of modules, re-

lations between modules, basic representations, essential

algorithms, and a variety of other aspects.

— Relatively invariant across time, do-
mains, and individuals

— Structurally and mechanistically well
defined

— Componential processes of cognition

3



Functions
in relation to cognitive science and in re-

lation to artificial intelligence:

— To provide an essential framework
to facilitate more detailed modeling and
understanding of various components and
processes of the mind

specifying computational models of cognitive mecha-
nisms and processes

embodying descriptions of cognition in computer pro-
grams

— To provide the underlying infrastruc-
ture for building intelligent systems

including a variety of capabilities, modules, and sub-
systems

implementing understanding of intelligence gained from
studying the human mind

−→ so, more cognitively grounded intelligent systems
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Why are Cognitive Architectures
Important for Cognitive Science?

— Psychologically oriented cognitive ar-
chitectures: “intelligent” systems that are
cognitively realistic, cognitive theories that
have been validated through psychological
data, and so on

— They shed new light on human cog-
nition and therefore they are useful tools
for advancing the science of cognition

— They may even serve as a founda-
tion for understanding collective human
behavior and social phenomena
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Why are Cognitive Architectures
Important for Cognitive Science?

— Force one to think in terms of process,
that is, in terms of mechanistic (computa-
tional) detail

— Require that important elements of a
model be spelled out explicitly, thus lead-
ing to conceptually clearer theories

— Provide a deeper level of explanation,
not centered on superficial, high-level fea-
tures of a task

— Lead to unified explanations for a
large variety of cognitive data and/or cog-
nitive phenomena

— Develop generic models of cognition
capable of a wide range of cognitive func-
tionalities, to avoid the myopia of narrowly-
scoped research

Newell (1990), Sun (2002, book published by Erlbaum)
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— In all, cognitive architectures are be-
lieved to be essential in advancing under-
standing of the mind (Anderson 1983, Newell
1990, Anderson and Lebiere 1998, Sun 2002)

— Therefore, developing cognitive archi-
tectures is an extremely important enter-
prise in cognitive science
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Why are Cognitive Archtiectures
Important for AI/CI?

— Support the central goal of AI/CI:
building artificial systems that are as ca-
pable as human beings

— Help us to reverse engineer the only
truly intelligent system around—the hu-
man being

— Form solid basis for building truly
intelligent systems, because they are well
motivated by, and properly grounded in,
existing cognitive research

— Facilitate the interaction between hu-
mans and artificially intelligent systems

— Antithesis of expert systems: instead
of focusing on capturing performance in
narrow domains, they are aimed to pro-
vide broad coverage of a wide variety of
domains
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— Many current business/industrial ap-
plications of intelligent systems increasingly
require broad systems that exhibit a broad
range of intelligent behaviors, not just iso-
lated systems of individual functionalities

For example, one application may require the inclusion

of capabilities for raw image processing, pattern recog-

nition, categorization, reasoning, decision making, and

natural language communications. It may even require

planning, monitoring, control of robotic devices, and in-

teractions with other systems and devices

— Such requirements highlight the im-
portance of research efforts on broadly scoped
cognitive architectures that perform a broad
range of cognitive functionalities across a
variety of task domains
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Still Room for Grand Theories?

— Some have claimed that fundamen-
tal scientific discovery and grand scien-
tific theorizing have become a thing of the
past. What remains to be done is filling in
details and refining some relatively minor
points

— Researchers in cognitive science are
pursuing integrative approaches that ex-
plain data in multiple levels, domains, and
functionalities

— Significant advances may be made
through hypothesizing and confirming deep-
level principles that unify superficial ex-
planations across multiple domains

— Cognitive architectures are the ba-
sis of such unified theories (see, e.g., Sun
2002, the Erlbaum book)
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An Example of a Cognitive Ar-
chitecture

CLARION

— An integrative architecture, consist-
ing of a number of distinct subsystems

— A dual representational structure in
each subsystem (implicit versus explicit rep-
resentations)

— Its subsystems include:

the action-centered subsystem (the ACS), the non-
action-centered subsystem (the NACS), the motivational
subsystem (the MS), and the meta-cognitive subsystem
(the MCS)

their respective roles

— See Sun (2002, the Erlbaum book)
and Sun (2003, Techinical specification)

11



Overview of CLARION

— Each subsystem consists of two levels
of representation

that is, a dual representational structure

— The top level encodes explicit knowl-
edge

— The bottom level encodes implicit knowl-
edge

Reber (1989), Seger (1994), Cleeremans et al (1998),

Sun (2002)

— The two levels interact, for example,
by cooperating in actions

— Essentially, it is a dual-process theory
of mind (Chaiken and Trope 1999)

— Duality of representation: extensively
argued in Sun et al (2005; in Psychologi-
cal Review)
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Overview of CLARION
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Some Details

The Action-Centered Subsystem:

The operation of the action-centered sub-
system:

1. Observe the current state x.
2. Compute in the bottom level the “values” of

x associated with each of all the possible ac-
tions ai’s: Q(x, a1), Q(x, a2), ......, Q(x, an),
based on implicit knowledge.

3. Find out all the possible actions (b1, b2, ....,
bm) at the top level, based on the input x
(sent up from the bottom level) and the ex-
plicit knowledge (explicit rules) in place.

4. Compare or combine the values of the selected
ai’s with those of bj’s (sent down from the top
level), and choose an appropriate action b.

5. Perform the action b, and observe the next
state y and (possibly) the reinforcement r.

6. Update Q-values at the bottom level in accor-
dance with the Q-Learning-Backpropagation
algorithm

7. Update the rule network at the top level using
the Rule-Extraction-Refinement algorithm.

8. Go back to Step 1.
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The Action-Centered Subsystem:

— In the bottom level of the action-
centered subsystem, implicit reactive rou-
tines are learned:

Q-value

Q-learning

modularity

— In the top level of the action-centered
subsystem, explicit conceptual knowledge
is captured in the form of explicit symbolic
rules

— See Sun et al (2001, Cognitive Sci-
ence) and Sun (2003, Technical Specifica-
tion) for details
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The Action-Centered Subsystem:
Autonomous generation of explicit concep-
tual structures

— The basic process of bottom-up learn-
ing:

If an action implicitly decided by the bottom level is

successful, then the agent extracts an explicit rule that

corresponds to the action selected by the bottom level

and adds the rule to the top level. Then, in subse-

quent interaction with the world, the agent verifies the

extracted rule by considering the outcome of applying

the rule: if the outcome is not successful, then the rule

should be made more specific and exclusive of the cur-

rent case; if the outcome is successful, the agent may try

to generalize the rule to make it more universal.
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— A kind of rational reconstruction of
implicit knowledge

— Learning explicit conceptual repre-
sentation at the top level can also be useful
in enhancing learning of implicit reactive
routines at the bottom level

Sun et al (2001), Sun et al (2005)

— After explicit rules have been learned,
a variety of explicit reasoning methods may
be used

Sun (2003)
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The Action-Centered Subsystem:
Assimilation of externally given concep-
tual structures

— CLARION can learn even when no
a priori or externally provided knowledge
is available

— However, it can make use of it when
such knowledge is available

— Externally provided knowledge, in the
forms of explicit conceptual structures (such
as rules, plans, categories, and so on), can

(1) be combined with existent conceptual structures
at the top level

(2) be assimilated into implicit reactive routines at the

bottom level

— This process is known as top-down
learning
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The Non-Action-Centered Sub-
system

— Representing general knowledge about
the world

that is, the “semantic” memory (Quillian 1968)

— Performing various kinds of memory
retrievals and inferences

— Under the control of the action-centered
subsystem (through its actions)
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The Non-Action-Centered Sub-
system

— At the bottom level, “associative mem-
ory” networks encode non-action-centered
implicit knowledge

Distributed representation of microfeatures

— At the top level, a general knowledge
store encodes explicit non-action-centered
knowledge

Symbolic/localist representation of concepts, i.e., chunks

(linked to microfeatures)

A node is set up in the top level to represent a chunk

(a concept), and connects to its corresponding microfea-

tures (distributed rpresentation) in the bottom level

— At the top level, links between chunks
encode associations between pairs of chunks
(concepts), known as associative rules
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The Non-Action-Centered Sub-
system

— Similarity-based reasoning may be em-
ployed

During reasoning, a known (given or inferred) chunk
may be automatically compared with another chunk. If
the similarity between them is sufficiently high, then the
latter chunk is inferred.

— Mixed rule-based and similarity-based
reasoning

Accounting for a large variety of commonsense rea-

soning patterns (including “inheritance reasoning”); see

Sun (1994, book published by Wiley), and Sun (1995,

Artificial Intelligence)
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The Non-Action-Centered Sub-
system

— Top-down learning in the NACS

— Bottom-up learning in the NACS
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The Motivational Subsystem

— Drives and their interactions (Toates
1986) leads to actions

It is concerned with why an agent does what it does.

Simply saying that an agent chooses actions to maxi-

mizes gains, rewards, reinforcements, or payoffs leaves

open the question of what determines these things

— It provides the context in which the
goal and the reinforcement of the action-
centered subsystem are set

— A bipartite (dual representational) sys-
tem of motivational representation:

The explicit goals of an agent
may be generated based on internal drive states
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The Motivational Subsystem

— Low-level primary drives (mostly phys-
iological): hunger, thirst, danger, ....

— High-level primary drives (mostly so-
cial): seeking of social approval, desire for
reciprocation, interest in exploration, .....

— Secondary (derived) drives

While primary drives are built-in and relatively unal-

terable, there are also “derived” drives, which are sec-

ondary, changeable, and acquired mostly in the process

of satisfying primary drives

Derived drives may include: (1) gradually acquired

drives, through “conditioning”; (2) externally set drives,

through externally given instructions
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The Motivational Subsystem

— A generalized notion of “drive”

— Essential desiderata (Tyrell 1993, Toates
1986, Hull 1943, Sun 2003)

— Activation levels of drives:
determined by equations derived from es-
sential desiderata (Sun 2003)

For example,
Get-food: 0.95 * max (food-deficit, food-deficit * food-

stimulus)
Avoid-danger: 0.98 * danger-stimulus * danger-certainty
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The Meta-Cognitive Subsystem

— Meta-cognition refers to “one’s knowl-
edge concerning one’s own cognitive pro-
cesses and products” and the control and
regulation of them (Flavell 1976)

— Regulates not only goal structures
but also cognitive processes per se

Schwartz and Shapiro (1986), Metcalfe and Shima-

mura (1994), Reder (1996), Mazzoni and Nelson (1998),
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The Meta-Cognitive Subsystem

(1) behavioral aiming:
setting of reinforcement functions
setting of goals

(2) information filtering:
focusing of input dimensions in the ACS
focusing of input dimensions in the NACS
selection of input values (within certain input di-
mensions) in the ACS
selection of input values (within certain input di-
mensions) in the NACS

(3) information acquisition:
selection of learning methods in the ACS
selection of learning methods in the NACS

(4) information utilization:
selection of reasoning methods in the top level
of the ACS
selection of reasoning methods in the top level
of the NACS

(5) outcome selection:
selection of output dimensions in the ACS
selection of output dimensions in the NACS
selection of output values (within certain output
dimensions) in the ACS
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selection of output values (within certain output
dimensions) in the NACS

(6) cognitive modes:
selection of explicit processing, implicit process-
ing, or a combination thereof (with proper inte-
gration parameters), in the ACS
selection of explicit processing, implicit process-
ing, or a combination thereof (with proper inte-
gration parameters), in the NACS

(7) parameters of the ACS and the NACS:
setting of parameters for the IDNs
setting of parameters for the ARS
setting of parameters for the AMNs
setting of parameters for the GKS
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Meta-Cognitive Subsystem: Struc-
ture

buffer

level selection

output selection

reasoning selection
learning selection

state
goal
drives

reinforcement

goal action

filtering. selection
and regulation

parameter setting

monitoring
input selection

goal change

evaluation

goal setting

Structure of the meta-cognitive
subsystem.
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Accounting for Cognitive Data:
Past simulations using CLARION

— Process control tasks

Berry and Broadbent (1988),
Stanley et al. (1989),

Dienes and Fahey (1995),

— Serial reaction time tasks

Lewicki et al. (1987),

Curran and Keele (1993)

— Artificial grammar learning tasks

Domangue et al (2004)

— Alphabetic arithmetic (letter count-
ing) tasks

Rabinowitz and Goldberg (1995)

— Categorical inference tasks

Sloman (1998)

— Discovery tasks

Bowers et al (1986)

30



— Tower of Hanoi

Gagne and Smith (1962)

— Minefield navigation

Sun et al. (2001)

— “Lack of knowledge” inferences

Gentner and Collins (1991)

— Meta-cognitive monitoring

Metcalfe (1986)

focus: capturing the interaction, and the
resulting synergy

using mainly bottom-up learning
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Accounting for Cognitive Data

Two examples:

— Alphabetic arithmetic

— Process control
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The Letter Counting Task: Rabi-
nowitz and Goldberg (1995)

Experiment 1: letter1+number = letter2
or letter1 − number = letter2

— the consistent group: 36 blocks of
training (the same 12 addition problems
in each)

— the varied group: 6 blocks of training
(the same 72 addition problems in each)

— transfer: 12 new addition problems
(repeated 3 times)
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The Letter Counting Task: Rabi-
nowitz and Goldberg (1995)

Experiment 2:
— training: the same
— transfer: 12 subtraction problems (re-

peated 3 times)
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Simulation of experiment 1: Clar-
ion vs. ACT-R
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Simulation of experiment 2: Clar-
ion vs. ACT-R
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Simulation: learning curves
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The learning curve of Rabinowitz and Goldberg (1995).
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The learning curve during the simulation of Rabinowitz and Gold-

berg (1995).
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Simulation: combination probabilities
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The combination probability curve of the consistent group during

training in the simulation.
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training in the simulation.
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Process Control Tasks: Stanley et
al. (1989)

— a system to be controlled: P = 2 ∗
W − P1 + N

— two versions (sugar vs. person)
— 12 levels of input and output
— 4 groups of subjects: original, mem-

ory training, simple rule, control

Human Data
Sugar Task Person Task

control 1.97 2.85
original 2.57 3.75
memory training 4.63 5.33
simple rule 4.00 5.91

— ANOVA
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Simulation of Stanley et al. (1989) (with
2-step window and QBP)

Human Data
Sugar Task Person Task

control 1.97 2.85
original 2.57 3.75
memory training 4.63 5.33
simple rule 4.00 5.91

Model Data
Sugar Task Person Task

control 1.92 2.62
original 2.77 4.01
memory training 4.45 5.45
simple rule 4.80 5.65

Mean-Squared Errors
Total Sugar Task Person Task

IDN+RER+IRL 0.113 0.178 0.048

Interpretation: interaction of the two levels
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Finer-grained analysis:

Model Data (IDN+RER)
Sugar Task Person Task

control 1.55 1.89
original 1.60 1.95
memory training 3.77 4.15
simple rule 4.08 4.45

Model Data (IDN+IRL)
Sugar Task Person Task

control 2.10 2.65
original 3.45 4.68
memory training 4.71 5.80
simple rule 5.06 6.29

Mean-Squared Errors
Total Sugar Task Person Task

IDN+RER 1.231 0.466 1.996
IDN+IRL 0.384 0.485 0.283
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Model Data (IDN+RER)
Sugar Task Person Task

control 1.68 1.81
original 1.64 1.96
memory training 4.23 4.46
simple rule 4.72 4.87

Model Data (IDN+IRL)
Sugar Task Person Task

control 2.23 2.76
original 3.43 4.55
memory training 4.55 5.63
simple rule 4.86 5.63

Mean-Squared Errors
Total Sugar Task Person Task

IDN+RER 1.016 0.407 1.624
IDN+IRL 0.285 0.387 0.184

— Many other probes
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Accounting for Cognitive Data

— In all of these cases, simulation based
on CLARION forced one to think in terms
of process details

E.g., in the simulation of process control tasks, we in-

vestigated detailed computational processes involved in

performing this task, in particular the two different ex-

plicit learning processes, and generated some conjectures

regarding their relative importance.

— The use of the CLARION cognitive
architecture provides a deeper level of sci-
entific explanations

E.g., in simulating the alphabetic arithmetic task, ex-

planations were provided in terms of action-centered knowl-

edge or non-action-centered knowledge, in terms of ex-

plicit knowledge or implicit knowledge, or in terms of

activations of representational units, and so on. They

were deeper because the explanations were centered on

lower-level mechanisms and processes

— Because of the nature of deeper ex-
planations, this style of theorizing is also
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more likely to lead to unified explanations
for a large variety of data and/or phenom-
ena

For example, all the afore-mentioned tasks have ex-

plained computationally in a unified way in CLARION
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A Model for Autonomous Intel-
ligent Systems

— CLARION: a model for building (au-
tonomous) intelligent systems?

— We applied CLARION to a few rea-
sonably interesting tasks

— Tasks: learning to play Tower of Hanoi
and learning minefield navigation

— Several different learning settings were
used: bottom-up learning, top-down learn-
ing, and their combinations
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Tower of Hanoi: Sun and Zhang (2004,
Cognitive Systems Research)
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Minefield Navigation

— Limited information through instru-
ments

obstacles

agent

target

— Severe time pressure; no time for rea-
soning, episodic memory retrieval, and other
slow processes

— Starting from scratch, without any a
priori knowledge
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Minefield Navigation: Comparisons
with regular reinforcement learning; Sun
and Peterson (1998; IEEE TNN)
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The Challenges Ahead

In general, building cognitive architec-
tures is an extremely difficult task:

(1) A cognitive architecture needs to be
compact but yet comprehensive in scope

(2) It needs to remain simple yet capture
a wide range of empirical data accurately

(3) It needs to be computationally feasi-
ble but also consistent with psychological
theories

(4) It needs somehow to sort out and in-
corporate the myriad of incompatible psy-
chological theories in existence, and so on
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The Challenges Ahead

— Challenges from cognitive science

— Challenges to/from AI/CI

— Challenges from social simulation
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The Challenges from Cognitive
Science

— To integrate a broad range of cogni-
tive functionalities, thus going against the
trend of increasing specialization

— To fit pieces together smoothly

— Developing integrative cognitive ar-
chitectures is thus a major challenge and
a major opportunity in cognitive science
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The Challenges from Cognitive
Science

— In developing cognitive architectures,
we need to come up with and follow a
broad set of desiderata

— For example, in Anderson and Lebiere
(2001) a set of desiderata proposed by Newell
(1990) was used to evaluate ACT-R versus
connectionist models.

These desiderata include flexible behavior, real-time

performance, adaptive behavior, vast knowledge base,

dynamic behavior, knowledge integration, natural lan-

guage, learning, development, evolution, and brain real-

ization

— In Sun (2004, Philosophical Psychol-
ogy), a broader set of desiderata was pro-
posed and used to evaluate a wider set of
cognitive architectures

These desiderata include ecological realism, bio-evolutionary

realism, cognitive realism, and many others
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— The advantages of coming up with
and applying a broad set of desiderata in-
clude (1) avoiding overly narrow models,
(2) avoiding missing certain crucial func-
tionalities, and (3) avoiding potentially in-
appropriate approaches or techniques in
implementing cognitive architectures

— Related to that, some general archi-
tectural principles need also be examined

— It is a challenge to methodically ex-
plore such issues and reach reasonable con-
clusions
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The Challenges from Cognitive
Science

— Complex models have always invoked
suspicion in psychology

Miller et al (1960): “A good scientist can draw an

elephant with three parameters, and with four he can tie

a knot in its tail. There must be hundred of parameters

floating around in this kind of theory and nobody will

ever be able to untangle them”.

— Counter-arguments can be advanced
on the basis of the necessity of having com-
plex models in understanding the mind

Miller et al (1960), Newell (1990), Sun (2002), and so

on.

— However, over-generality, beyond what
is minimally necessary, is always a danger

Models may account for a large set of data because

of their extreme generality, rather than capturing any

deep structures and regularities underlying cognitive pro-

cesses
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— This situation is to be avoided, by
adopting a broad perspective, and by adopt-
ing a multi-level framework to fully exploit
all available information and constraints

Sun et al (2005, Philosophical Psychology)

57



The Challenges from Cognitive
Science

— The validation of process details of
a cognitive architecture against empirical
(psychological) data

There have been too many instances in the past that

research communities rushed into some particular model

or some particular approach toward modeling cognition

and human intelligence, without knowing exactly how

much of the approach or the model was veridical

— Painstakingly detailed work needs to
be carried out before sweeping claims can
be made

— Validation of cognitive architectures
poses a serious challenge, because of a myr-
iad of mechanisms involved in cognitive
architectures, and their variety and com-
plexity
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The Challenges from/to Compu-
tational Intelligence

Langley and Laird (2003):

(1) generality, versatility, and taskability

(2) both optimality and scalability (time/space
complexity)

(3) both reactivity and goal-directed be-
havior

(4) both autonomy and cooperation

(5) adaptation, learning, and behavioral
improvements

and so on
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The Challenges from/to Compu-
tational Intelligence

— To develop better, more realistic cog-
nitive architectures, we need better algo-
rithms

for various functionalities such as information filter-

ing, encoding, learning, information retrieval, reasoning,

decision making, problem solving, communication, and

so on.

— Only on the basis of such key algo-
rithms that are continuously improving,
we may build better cognitive architec-
tures correspondingly

In particular, we need better natural language pro-

cessing capabilities, more efficient planning algorithms,

more powerful learning algorithms, and so on.

— These are significant challenges from
the field of cognitive architectures to AI/CI
researchers
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The Challenges from/to Compu-
tational Intelligence

— Various pieces have been, or are be-
ing, developed by various subfields of AI/CI

— AI/CI researchers also need to de-
velop better computational methods (al-
gorithms) for putting the pieces together
to form a better architecture

— The challenge is to continuously im-
proving upon the state of the art and to
come up with architectures that better and
better mirror the human mind and serve a
variety of application domains at the same
time
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The Challenges from/to Compu-
tational Intelligence

— Cognitive architectures need to find
both finer and broader applications, that
is, both at lower levels and at higher levels

For example, some cognitive architectures found ap-
plications in large-scale simulation at a social, organiza-
tional level

For another example, some other cognitive architec-

tures found applications in interpreting not only psycho-

logical data but also neuroimaging data (at a biological

level)

— Pew & Mavor (1998) and Ritter et al
(2003) provided some examples of (poten-
tial) applications of cognitive architectures

— Inevitably, this issue will provide im-
petus for future research (applied as well
as theoretical) in cognitive architectures,
and in cognitive modeling in general
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Concluding Remarks

— Progress has been made in advancing
the research on cognitive architectures

— There is still a long way to go

— An example cognitive architecture pre-
sented

— But need to explore more fully the
space of possible cognitive architectures

— Also need to enhance the functionali-
ties of cognitive architectures so that they
can have the full range of intelligence and
cognitive capabilities

— Many challenges and issues need to
be addressed

— Profound impact in the future ex-
pected
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