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Some Historical Remarks

I McCulloch, Pitts 1943:
A logical calculus and the ideas immanent in the nervous activity .

. Networks of binary threshold units are finite automata and vice versa.

. Bader, H., Scalzitti 2004: Weighted automata are semiring artificial neural
networks.

I Ballard 1986: Parallel logic inference and energy minimization.

. Restricted unit resolution and symmetric networks.

I Pinkas 1991: Symmetric neural networks and logic satisfiability .

. Propositional logic and symmetric networks.

. Strohmaier 1997: Multi-flip networks.
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Historical Remarks – Structured Connectionist Networks

I Shastri, Ajjanagadde 1993: From Associations to Systematic Reasoning:
A Connectionist Representation of Rules, Variables and Dynamic Bindings
using Temporal Synchrony .

. A limited inference system for reflexive reasoning.

. Beringer, H. 1993: Reflexive reasoning is reasoning by reduction.

I Stolcke 1989:
Unification as constraint satisfaction in structured connectionist networks.

. Unification of feature structures without occurs check.

. H. 1990: A connectionist unification and matching algorithm.

I H., Kurfess 1992: CHCL – A connectionist inference system.

. Horn clause logic with limited resources based on the connection method.
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Motivation

I Smolensky 1987:
Can we find ways of naturally instantiating the power of
symbolic computation within fully connectionist systems?

I McCarthy 1988:
Propositional fixation of current connectionist systems.

I Fodor, Pylyshin 1988:
Reasoning is based on structured objects and structure-sensitive processes.

Our Goal: To develop connectionist models for first-order reasoning.
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The Very Idea

I Various semantics for logic programs coincide with fixed points of associated
immediate consequence operators (e.g., Apt, vanEmden 1982).

I Banach Contraction Mapping Theorem

. A contraction mapping f defined on a complete metric space (X, d)
has a unique fixed point.

. The sequence y, f(y), f(f(y)), . . . converges to this fixed point
for any y ∈ X.

Fitting 1994: Consider logic programs, whose immediate con-
sequence operator is a contraction.

I Funahashi 1989: Every continuous function on the reals can be uniformly
approximated by feedforward connectionist networks.

H., Kalinke, Störr 1999: Consider logic programs, whose imme-
diate consequence operator is continuous on the reals.
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The Core Method

I Let L be a logic language.

I Given a logic programP together with immediate consequence operator TP .

I Let I be the set of interpretations forP .

I Find a mapping R : I → Rn.

I Construct a feed-forward network computing fP : Rn → Rn, called the core,
such that the following holds:

. If TP(I) = J then fP(R(I)) = R(J), where I, J ∈ I.

. If fP(~s) = ~t then TP(R−1(~s)) = R−1(~t), where ~s,~t ∈ Rn.

I Connect the units in the output layer recursively to the units in the input layer.

I Show that the following holds

. I = lfp (TP) iff the recurrent network converges to or approximates R(I).

Connectionist model generation using recurrent networks with feed forward core.
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Propositional Core Method using Binary Threshold Units

I Let L be the language of propositional logic over a set V of variables.

I LetP be a propositional logic program, e.g.,

P = {A, C ← A ∧ ¬B, C ← ¬A ∧ B}.

I I = 2V is the set of interpretations forP .

I TP(I) = {A | A← L1 ∧ . . . ∧ Lm ∈ P such that I |= L1 ∧ . . . ∧ Lm}.
I Let n = |V| and identify V with {1, . . . , n}.
I Define

R(I)[j] =


1 if j ∈ I,

0 if j 6∈ I.

E.g., if V = {A, B, C} = {1, 2, 3} and I = {A, C} then R(I) = (1, 0, 1).

I Other encodings are possible, e.g.,

R(I)[j] =


1 if j ∈ I,

−1 if j 6∈ I.
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Propositional Core Method – Computing the Core

I Consider againP = {A, C ← A ∧ ¬B, C ← ¬A ∧ B}.
I A translation algorithm translatesP into a core of binary threshold units:
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Propositional Core Method – Some Results

I Proposition 2-layer networks cannot compute TP for definiteP .

I Theorem For each programP , there exists a core computing TP .

I Adding recurrent connections:
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Propositional Core Method – More Results

I A logic programsP is said to be strongly determined if there exists a metric d on
the set of all Herbrand interpretations forP such that TP is a contraction wrt d.

I Corollary Let P be a strongly determined program. Then there exists a core
with recurrent connections such that the computation with an arbitrary initial input
converges and yields the unique fixed point of TP .

I Let n be the number of clauses and m be the number of propositional variables
occurring inP .

. 2m + n units, 2mn connections in the core.

. TP(I) is computed in 2 steps.

. The parallel computational model to compute TP(I) is optimal.

. The recurrent network settles down in 3n steps in the worst case.

I See H., Kalinke 1994 or Hitzler, H., Seda 2004 for details.
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Knowledge Based Artificial Neural Networks

I Towell, Shavlik 1994: Can we do better than empirical learning?

I Sets of hierarchical logic programs, e.g.,

P = {A← B ∧ C ∧ ¬D, A← D ∧ ¬E, H ← F ∧G, K ← A,¬H}.
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Propositional Core Method using Sigmoidal Units

I d’Avila Garcez, Zaverucha, Carvalho 1997:
Can we combine the ideas in Towell, Shavlik 1994 and H., Kalinke 1994?

I Consider propositional logic language.

I Let I be an interpretation and a ∈ [0, 1].

R(I)[j] =


v ∈ [a, 1] if j ∈ I,

w ∈ [−1,−a] if j 6∈ I.

I TranslateP into a core of bipolar sigmoidal units.

I Relation to logic programs is preserved.

I The core is trainable by backprobagation.

I Many interesting applications.

I For more details see d’Avila Garcez, Broda, Gabbay 2002.
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Propositional Core Method – Three-Valued Logic

I Kalinke 1994: Consider truth values>, ⊥, u.

I Interpretations are pairs I = 〈I+, I−〉.
I Immediate consequence operator ΦP(I) = 〈J+, J−〉, where

J+ = {A | A← L1 ∧ . . . ∧ Lm ∈ P and I(L1 ∧ . . . ∧ Lm) = >},
J− = {A | for all A← L1 ∧ . . . ∧ Lm ∈ P : I(L1 ∧ . . . ∧ Lm) = ⊥}.

I Let n = |V| and identify V with {1, . . . , n}.
I Define R : I → R2n as follows:

R(I)[2j − 1] =


1 if j ∈ I+

0 if j 6∈ I+

ff
and R(I)[2j] =


1 if j ∈ I−

0 if j 6∈ I−

ff
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Propositional Core Method – Multi-Valued Logics

I For each programP , there exists a core computing ΦP , e.g.,

P = {C ← A ∧ ¬B, D ← C ∧ E, D ← ¬C}.
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I Lane, Seda 2004: Extension to finitely determined sets of truth values.
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Propositional Core Method – Modal Logic

I Garcez, Lamb, Gabbay 2002.

I Let L be a propositional logic language plus

. the modalities 2 and 3 and

. relations between worlds.

I Modal logic programsP .

I Corresponding semantic operator TP .

I Translation algorithm such that TP is again computed by a core.

I For each world, turn the core into a recurrent network.

I Connect cores with respect to the given set of relations.
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First Order Logic Programs

I Given a logic programP over a first order language L.

I Let ground (P) be the set of all ground instances of clauses inP .

I Let BL be the corresponding Herbrand base.

I 2BL is the set of Herbrand interpretations.

I TP : 2BL → 2BL is defined as

TP(I) = {A | A← L1 ∧ . . . ∧ Lm ∈ ground (P) : I |= L1 ∧ . . . ∧ Lm}.

I BL is countably infinite.

I The propositional core method is not applicable.

How can the gap between the discrete, symbolic setting of logic, and the
continuous, real valued setting of connectionist networks be closed?
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First Order Core Method – The Goal

I Find R : 2BL → R and core computing fP : R→ R
such that the following conditions hold.

. If TP(I) = J then fP(R(I)) = R(J) for all I, J ∈ 2BL.
If fP(s) = t then TP(R−1(s)) = R−1(t) for all s, t ∈ R.

 fP is a sound and complete encoding of TP .

. TP is a contraction on 2BL iff fP is a contraction on R.

 The contraction property and fixed points are preserved.

. fP is continuous on R.

 A connectionst network approximating fP is known to exist.
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Acyclic Logic Programs

I LetP be a program over a first order language L.

I A level mapping forP is a function l : BL → N.

. We define l(¬A) = l(A).

I We can associate a metric dL with L and l. Let I, J ∈ 2BL:

dL(I, J) =


0 if I = J

2−n if n is the smallest level on which I and J differ.

I Proposition (2BL, dL) is a complete metric space Fitting 1994.

I P is said to be acyclic wrt a level mapping l,
if for every A← L1 ∧ . . . ∧ Ln ∈ ground (P) we find l(A) > l(Li) for all i.

I Proposition LetP be an acyclic logic program wrt l and dL the metric associated
with L and l, then TP is a contraction on (2BL, dL).
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Mapping Interpretations to Real Numbers

I LetD = {r ∈ R | r =
P∞

i=1 ai4−i, where ai ∈ {0, 1} for all i}.
I Let l be a bijective level mapping.

I {>,⊥} can be identified with {0, 1}.
I The set of all mappings I : BL → {>,⊥} can be identified with

the set of all mappings f : N→ {0, 1}.
I Let IL be the set of all mappings from BL to {0, 1}.
I Let R : IL → D be defined as

R(I) =
∞X
i=1

I(l−1(i))4−i
.

I Proposition R is a bijection.

We have a sound and complete encoding of interpretations.
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Mapping Immediate Consequence Operators to Functions on the Reals

I We define fP : D → D : r 7→ R(TP(R−1(r))).

r -

-

fP

TP

r′

I I′

? ?

R R

We have a sound and complete encoding of TP .

I Proposition LetP be an acylic program wrt a bijective level mapping.
fP is a contraction onD.

Contraction property and fixed points are preserved.
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Approximating Continuous Functions

I Corollary fP is continuous.

I Theorem Funahashi 1989 Suppose that φ : R → R is non-constant, bounded,
monotone increasing and continuous. Let K ⊆ Rn be compact, let f : K → R
be continuous, and let ε > 0. Then there exists a 3-layer feed forward network
with sigmoidal function φ for the hidden layer and linear activation function for
the input and output layer whose input-output mapping f : K → R satisfies

maxx∈K|f(x)− f(x)| < ε.

. Every continuous function f : K → R can be uniformly approximated by
input-output functions of 3-layer feed forward networks.

I Theorem fP can be uniformly approximated by input-output functions of 3-layer
feed forward networks.

. TP can be approximated as well by applying R−1.

A connectionist network approximating immediate consequence operator exists.

Logic Programs and Connectionist Networks 21



An Example

I ConsiderP = {q(0), q(s(X))← q(X)} and let l(q(sn(0))) = n + 1.

. P is acyclic wrt l, l is bijective, R(BL) = 1
3.

. fP(R(I)) = 4−l(q(0)) +
P

q(X)∈I 4−l(q(s(X)))

= 4−l(q(0)) +
P

q(X)∈I 4−(l(q(X)))+1) = 1+R(I)
4 .

I Approximation of fP to accuracy ε yields

f̃(x) ∈
»
1 + x

4
− ε,

1 + x

4
+ ε

–
.

I Starting with some x and iterating f̃ yields in the limit a value

r ∈
»
1− 4ε

3
,
1 + 4ε

3

–
.

I Applying R−1 to r we find

q(sn(0)) ∈ R
−1(r) if n < −log4ε− 1.
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Approximation of Interpretations

I LetP be a logic program over a first order language L and l a level mapping.

I An interpretation I approximates an interpretation J to a degree n ∈ N
if for all atoms A ∈ BL with l(A) < n we find I(A) = > iff J(A) = >.

. I approximates J to a degree n iff dL(I, J) ≤ 2−n.
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Approximation of Supported Models

I Given an acyclic logic programP with bijective level mapping.

I Let TP be the immediate consequence operator associated withP and
MP the least supported model ofP .

I We can approximate TP by a 3-layer feed forward network.

I We can turn this network into a recurrent one.

Does the recurrent network approximate the supported model of P ?

I Theorem For an arbitrary m ∈ N there exists a recursive network with sigmoidal
activation function for the hidden layer units and linear activation functions for
the input and output layer units computing a function f̃P such that there exists an
n0 ∈ N such that for all n ≥ n0 and for all x ∈ [−1, 1] we find

dL(R
−1(f̃n

P (x)), MP) ≤ 2−m
.

I For more details see H., Kalinke, Störr 1999.
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First Order Core Method – Extensions

I Detailed study in (topological) continuity of semantic operators
Hitzler, Seda 2003 and Hitzler, H., Seda 2004:

. many-valued logics,

. larger class of logic programs,

. other approximation theorems.

I A core method for reflexive reasoning H., Kalinke, Wunderlich 2000.

I The graph of fP is an attractor of some iterated function system
Bader 2003 and Bader, Hitzler 2004:

. representation theorems,

. fractal interpolation,

. core with units computing radial basis functions.

I Finitely determined sets of truth values Lane, Seda 2004.
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Constructive Approaches: Fibring Artificial Neural Networks

I Fibring function Φ associated with neuron i maps some weights w of a network
to new values depending on w and the input x of i Garcez, Gabbay 2004.
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Works well for acyclic logic programs with bijective level mapping
Bader, Garcez, Hitzler 2004.
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Constructive Approaches: Approximating Piecewise Constant Functions

I Consider graph of fP .

Approximate fP up to a given level l.

Construct network computing piecewise constant function.

Step activation functions.
Sigmoidal activation functions.
Radial basis functions.
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Constructive Approaches: Approximating Piecewise Constant Functions

I Consider graph of fP .

I Approximate fP up to a given level l.

I Construct core computing piecewise constant function.

. Step activation functions.
Sigmoidal activation functions.
Radial basis functions.
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Constructive Approaches: Approximating Piecewise Constant Functions

I Consider graph of fP .

I Approximate fP up to a given level l.

I Construct core computing piecewise constant function.

. Step activation functions.

. Sigmoidal activation functions.

. Radial basis functions.
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I Bader, Hitzler, Witzel 2005.
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Open Problems

I How can first order terms be represented and manipulated
in a connectionist system? Pollack 1990, H. 1990, Plate 1994.

I Can the mapping R be learned? Gust, Kühnberger 2004.

I How can first order rules be extracted from a connectionist system?

I How can multiple instances of first order rules be represented
in a connectionist system? Shastri 1990.

I What does a theory for the integration of logic and connectionist systems
look like?

I Can such a theory be applied in real domains outperforming
conventional approaches? Witzel 2005.

I How does the core method relate to model-based reasoning approaches
in cognitive science (e.g. Barnden 1989, Johnson-Laird, Byrne 1993)?

Logic Programs and Connectionist Networks 33



Many thanks to Yvonne McIntyre (Kalinke), Hans-Peter Störr,
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